EXPLAIN

4. Horizontal Mixing by Winds & Currents

What Makes the Wind Blow?

Three real forces

(gravity, pressure gradient, & friction) push the air around

Two apparent forces due to rotation (Coriolis and centrifugal)

Large-scale flow is dominated by gravity/pressure and Coriolis ... friction and centrifugal are also important locally

Newton

$$\sum \vec{F} = m\vec{a}$$

- Objects stay put or move uniformly in the same direction unless acted on by a force
- Acceleration is a result of the sum (net) of forces, in the vector sense

Forces Acting on the Air

- Pressure gradient force (pushing)
- Gravity (falling)
- Friction (rubbing against the surface)
- "Apparent" forces
 - The Coriolis Force
 - Centrifugal Force

Why does pressure vary horizontally? Elevation changes

- cause pressure differences
- These are balanced by gravity and don't cause wind to blow
- But why does pressure vary between locations which are at the same elevation?

Thought Experiment Review

- Starting with a uniform atmosphere at rest, we introduced differential heating
- The differential heating caused different rates of expansion in the fluid
- The differing rates of expansion resulted in pressure differences aloft along a horizontal surface.
- The pressure differences then induced flow (wind!) in the fluid
- This is a microcosm of how the atmosphere converts differential heating into motion

If the Earth didn't rotate, it would be easy for the flow of air to balance the energy

- Thermal convection leads to formation of convection cell in each hemisphere
- Energy transported from equator toward poles
- Surface wind in Colorado would always blow from the North

Coriolis Force

Magnitude

- Depends upon the latitude and the speed of movement of the air parcel
 - The higher the latitude, the larger the Coriolis force
 zero at the equator, maximum at the poles
 - · The faster the speed, the larger the Coriolis force

Direction

- The Coriolis force always acts at right angles to the direction of movement
 - · To the right in the Northern Hemisphere
 - To the left in the Southern Hemisphere

Winds on the Rotating Earth

- Deep convective cells confined to tropics
- Condensation heating in rising branch of Hadley Cell lifts the center of mass of the atmosphere (converts latent to potential energy)
 - Downhill slope toward winter pole produces jet streams in middle latitudes
 - Jet is unstable to small perturbations, breaks down in waves we call winter storms

- Subtropical Jet is zonal mean response to poleward flow in upper branch of Hadley Cell
- Polar front jet is response to south-north temperature differences

Eddies in the Jet Stream

- Momentum is transferred from the earth to the atmosphere in the trade wind belt.
- Momentum is transferred from the atmosphere to the earth in the midlatitudes.
- If the earth is always trying to slow down the midlatitude westerlies, why don't they weaken and disappear over time?
 - Eddies (storms) transfer momentum poleward in the upper troposphere.
 - This momentum transfer weakens the Hadley circulation, but drives the Ferrel cell.

Atmospheric Circulation in a nutshell

- Hot air rises (rains a lot) in the tropics
- Air cools and sinks in the subtropics (deserts)
- Poleward-flow is deflected by the Coriolis force into westerly jet streams in the temperate zone
- Jet streams are unstable to small perturbations, leading to huge eddies (storms and fronts) that finish the job

- About 90% of an iceberg is under water
- Early sailors in N
 Atlantic (esp
 Vikings!) noticed
 that icebergs
 move 90° to right
 of the wind

Remember

- More solar in than thermal out in tropics & vice versa at poles
- Job of the atmosphere & oceans is to move heat from tropics to poles!
- This is complicated by the rotation of the Earth (much worse on Jupiter!)
- Hadley Cells in tropics pass heat to jet streams in each hemisphere
- Ocean gyres move half the heat