1

Photosynthesis, Transpiration, and Surface Energy Balance

Please read

- Denning (1993, unpublished)
- Bonan Chapter on Photosynthesis

Photosynthesis

- Levels of control
 - Controls in individual leaves
 - Control by canopy processes
- Controlling factors
 - Direct controls: light, CO₂
 - Indirect controls: water, nutrients

Two major sets of reactions

- Light-harvesting reactions
 - Convert light into chemical energy (chlorophyll pigments inside the chloroplast)
 - Generate stored energy and "reductant"
- Carbon fixation ("dark") reactions
 - Uses chemical energy to convert CO₂ into sugars for later use by plant (or heterotrophs!)
 - Conversion of inorganic, oxidized carbon to organic, reduced carbon in an oxidizing environment requires energy and reductant
 - Primary fixation enzyme is called *Rubisco*

Catalysts are chemicals which reduce the activation energy of a reaction, allowing it to run faster without consuming the catalyst

Scott Denning CSU ATS

Michaelis-Menten Kinetics (cont'd)Steady-state amount of ES
$$[ES] = \frac{[E][S]}{K_M}$$
Define total amount of enzyme $E_T = E + ES$, then $[ES] = ([E_T] - [ES])[S]/K_M$ Solve for ES: $[ES] = [E_T]\frac{[S]}{[S] + K_M}$ Finally, rate of production of product is given by $V = k_3[E_T]\frac{[S]}{[S] + K_M}$ $V = V_{max}\frac{[S]}{[S] + K_M}$

Photochemical Reaction Center

- Absorbed energy is passed among pigment molecules until it reaches a special molecule called "trap chlorophyll"
- Slightly lower energy level, energy can't get out
- Redox reactions reset trap, pass energy on as chemical potential

- Reaction catalyzed by RuBP Carboxylase
- Also goes "backward" to O₂ (oxygenase)
- ribulose bis-phosphate carboxylase oxygenase "RUBISCO"

Rubisco can gain or lose carbon

- Carboxylase
 - Reacts with CO₂ to produce sugars
 - Leads to carbon gain
- Oxygenase
 - Reacts with O_2 to convert sugars to CO_2
 - Respires 20-40% of fixed carbon
 - Process known as photorespiration
 - Photoprotection mechanism

C₃ and C₄ Photosynthesis

- Most plants produce sugars by the pathway outlined above, in which the first organic compounds have three carbon atoms (C₃)
- Some tropical and subtropical plants have evolved a separate mechanism in which the first products have four carbon atoms (C₄)
- C₄ photosynthesis is a mechanism to overcome photorespiration (high O₂/CO₂ ratio, high T)
- Involves active transport of dissolved CO₂ to specialized "bundle-sheath" cells to overwhelm O₂ at Rubisco active sites
- Uses energy to do this ... only "pays off" when photorespiration is a big problem
- Evolved only ~ 10 My BP, when CO₂ levels dropped

