## Terrestrial Carbon Cycle:

Allocation, Decomposition, Nutrient Cycling, and Sink Processes

#### Please read:

- Schulze, E.-D., 2002. "Carbon Turnover."
   In: Plant Ecology. Springer. p. 427-438.
- Norby, R. J. et al (2010), CO<sub>2</sub> enhancement of forest productivity constrained by limited nitrogen availability, *Proc. Nat. Acad. Sci.*, 107, 19368–19373.
- Pan, Y. et al (2011a), Age structure and disturbance legacy of North American Forests. Biogeoscienes 8, 715-732

## **Plant Respiration**

Gross Primary Production – Plant respiration = Net Primary Production

$$GPP - R_a = NPP$$

$$GPP - R_m - R_g = NPP$$

 $R_m = f(N, temperature, O_2)$  Maintenance respiration

R<sub>g</sub> - growth respiration, involves construction costs of building new tissues finew growth)

GPP - 
$$R_{leaf}$$
 (m + g) -  $R_{stem}$  (m + g) -  $R_{root}$  (m +g) = NPP

Allocation and respiration processes occur simultaneously

### **Carbon Allocation:**

# What happens to photosynthate (glucose) after it is formed in chloroplast?

- Some is consumed to drive biosynthesis processes in leaf
- Some is stored in easily-available form for later
- Some stored photosynthate is transported to other parts of the plant (roots, stems) to be used there for maintenance and growth
- Relative allocation to leaves, stems, and roots depends on resource needs
  - Plant is shaded (light-limited): grow more stem
  - Water or nutrient limited: grow more roots
  - Fat and happy: grow more leaves
- Question: Where does carbon & nitrogen come from when it's time to grow new leaves in spring?

#### **Factors controlling plant respiration**

- 1. Tissue N -- protein turnover; 6% replaced daily
- 2. Temperature -- increased protein and membrane turnover at higher temperatures

GPP and R<sub>a</sub> generally related, so NPP and GPP are proportional

However, at high temperatures, GPP may be maintained or inhibited, while R<sub>plant</sub> increases. NPP/GPP decreases.























| C                                                | 1 Pg C         | = 10 <sup>15</sup> g C)          |                                                                                      |
|--------------------------------------------------|----------------|----------------------------------|--------------------------------------------------------------------------------------|
| Concept                                          | Acronym        | Global Flux                      | Definition                                                                           |
| Gross Primary<br>Production                      | GPP            | ~100 –150 Pg C yr1               | Carbon uptake by plants during photosynthesis                                        |
| Autotrophic Respiration                          | R <sub>a</sub> | ~ ½ of GPP                       | Respiratory loss by plants for growth or maintenance                                 |
| Net Primary Production                           | NPP            | ~ ½ of GPP                       | GPP – R <sub>a</sub>                                                                 |
| Heterotrophic<br>Respiration<br>(on land)        | R <sub>h</sub> | ~82% – 95% of<br>NPP             | Respiratory loss by the<br>heterotrophic communit<br>(herbivores, microbes,<br>etc.) |
| Ecosystem Respiration                            | $R_a$          | ~91% – 97% of<br>GPP             | R <sub>a</sub> + R <sub>h</sub>                                                      |
| Non-CO <sub>2</sub> Losses                       |                | ~2.8 – 4.9 Pg C yr <sup>-1</sup> | CO, CH <sub>4</sub> , terpenes,<br>dissolved inorganic and<br>organic carbon, etc    |
| Non-Respiratory CO <sub>2</sub><br>Losses (Fire) |                | ~1.6 – 4.2 Pg C yr-1             | Combustion flux of CO                                                                |
| Net Ecosystem Production or Net Biome Production | NEP            | ~±2.0 Pg C yr1                   | Total carbon accumulation within the ecosystem                                       |













#### **Nitrogen Fertilization** Atmospheric N<sub>2</sub> is triply-bound so Global N fixation (Tg/yr) "Natural" N fixation chemically and biologically inert Natural N-fixation by lightning and by specialized microbes. linked to very tight N

- Fig. 8. Extent of human alteration of the global biogeochemical cycle of nitrogen. The "natural N fixation" line represents biological N fixation in natural errestrial systems plus fixation by lightning. I assume that natural biological fixation has not changed recently, although it probably has declined due to land use change and increased N deposition. The "anthropogenic N fixation" line represents the sum of industrial N fixation of refriliters. Fastion during focal field company. N fixation for fertilizers, fixation during fossil fuel combus-tion, and fixation by leguminous crops (Smil 1991, Vitousek and Matson 1993). Nitrogen biogeochemistry: The change re-ports the modern fractions for each source.
  - Manufacture of fertilizers uses energy to fix N

cycling in biosphere

**Combustion burns air!** 































