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Very large uncertainty here!




CO, Concentration (ppm)
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Monthly Average Carbon Dioxide Concentration
Data from Scripps CO, Program

Last updated February 2006
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Fate of Anthropogenic CO, Emissions (2000-2009)

1.140.7 PgC y 4.1£0.1 PgC y-
Land-Use 47%

2.4 PgCy

77:05PgCy" T —’Cl ' 27%
Fossil Fuels "2l other ux components

26%

2.3+0.4 PgC y!

Average of 5 models

Global Carbon Project 2010



ABSORBED BY LANDS/
OCEANS

STAYS IN ATMOSPHERE
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Figure 6.12: (Top) Global average atmospheric CO, growth rate, computed from the observations of the SIO network
(light green line, Keeling et al., (2005), updated) and from the marine boundary layer air reference measurements of the
NOAA-GMD network (dark green line; Conway et al., 1994; Dlugokencky and Tans, 2013). (Bottom) Atmospheric
growth rate of CO, as a function of latitude determined from the NOAA-ESRL network, representative of stations
located in the marine boundary layer at each given latitude (Masarie and Tans, 1995; Dlugokencky and Tans, 2013).
Sufficient observations are available only since 1979.



Questions about the Land-based carbon
sSinks

Carbon cycling
The mysterious missing sink

David W. Schindler

« Where are the carbon sinks?
North America? Tropics?

« What are the mechanisms?
o Forest regrowth?
o CO, Fertilization?
o Nitrogen Deposition?

o Will they Saturate? (depends
on the mechanism)



CO, Airborne Fraction

LOL™ Trend: 031%y" (p=~09)
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In the past 50 years, the fraction of CO2 emissions that remains in the
atmosphere each year has likely increased, from about 409% to 459% ... Changes
in the CO2 sinks are highly uncertain, but they could have a significant influence
on future atmospheric CO2 levels. It is therefore crucial to reduce the
uncertainties.

Le Quéré et al. 2009, Nature Geoscience



future GHG emissions may require
monitoring

Current country-wide emissions estimates are
largely self-reported. (‘“‘Bottom-Up Estimates’’)

If/when there is a global price on carbon
emissions, there will be an incentive to under-
report one’s emissions.

Independent and globally consistent emissions
monitoring is therefore highly desirable.



“Top-Down” approach to CO, sources
and sinks

JL « Using models of the
land, ocean, and
atmospheric
transport, these
models can “back
out” what emissions
must of have been to
l lead to global map of
CO2

Inversion Model

CO, Sources & Sinks

http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/



Measurements of CO, come
primarily from ground
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We'd like to complement the sparse in-situ
network with global satellite observations!

Source; NOAA ESRL



Measuring an invisible gas from space




Measuring Carbon Dioxide in Reflected Sunlight

Measured Spectra
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GOSAT

Greenhouse gases 0CO0
Observing SATellite Orbiting Carbon Observatory

Launch failed on
February 24, 2009 when
nose-cone failed to open
& detach

Launched successfully on 23
January 2009






CO, & Methane from GOSAT
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Surface CO2 Simulation

http://biodav.atmos.colostate.edu/parazoo/GlobalCO2_500m_sibgeos5_JJAS2004.mov

Courtesy N. Parazoo, CSU



Challenges for Measuring Carbon Dioxide
from Space

Variations in Column-averaged CO, are small: 1-10 ppm out of
~ 390 ppm background.

Measurements with accuracies of ~1-2 ppm are needed to
improve over the current surface network

Must have an accurate way to screen out thick clouds &
aerosols (coaligned on-board imager or spectral technique)

Thin & subvisible clouds+aerosols can cause errors of several
ppm.



Validation Against TCCON

XCO2 [ppm]
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- GOSAT X, retrievals are compared with those from
Near-simultaneous observations  the ground based Total Carbon Column Observing
are acquired over TCCON station. Network (TCCON) to verify their accuracy




GOSAT Comparisons with Surface-based

measurements

» The GOSAT seasonal
cycles & trends closely
match those at the
ground validation sites.

» 1-sigma std. dev. vs.
TCCON are ~ 2 ppm.

» So far we haven’t
answered the
fundamental questions
because data are quite
noisy!

Figure from
D. Wunch,
Caltech



Comparisons vs. Ensemble of Models

Ensemble of 7 Models, sampled at GOSAT observations Bias, or
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LSCE+ACOS flux
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« General consistency
between Surface and GOSAT

« Too little source in Europe?
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GOSAT Observations of
Megacities?
Can we see emissions on the city scale using

differencing?

~709% of global energy-related emissions
attributable to urban regions

Megacities in developing countries growing at
>A970/yr

Biases in retrievals may partially cancel from urban
to nearby rural regions



GOSAT Observations of Megacities
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Selected GOSAT Footprints
in LA Basin & surrounding
desert, overplotted with
night lights.
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Mean Basin-Desert difference = 3.2 ppm

0.7 ppm difference detectable at 959 conf.

Translates to ability to detect 229% change
in L.A. emissions.

from Eric Kort (JPL)



Another spin-off: Chlorophyll fluorescence

® Chlorophyll fluorescence may provide a direct probe into the photosynthetic
activitv of a nlant = Grase Primary Production (GPP)
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® (Can be viewed by the filling-in effect of Solar & Oxygen lines in the Oxygen-A
band of GOSAT, OCO-2, etc.

e Retrieval based on the solar lines alone can determine fluorescence, with errors
<~ 109%.
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The CO,

OCO & GOSAT measure
NET CO, fluxes

fluorescence synergy

NET Sink:
~2 Pg/yr

! Land Source:
120 Pg/yr

Target of CO,

Land Sink:
122 Pg/yr

Fluorescence enables
monitoring of “Gross
Primary Production” —
the land-based sink.

Target of fluorescence

Offers potential:

« To disentangle
sources & sinks.

« Better process-level
understanding (e.g.
drought tolerance)
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measured F; (% of continuum level)
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Virtually no remotely-sensed land surface products work in all-sky
conditions — can lead to clear-sky bias problems

The signature of Fraunhofer lines in the solar spectrum is only
erased via chlorophyll fluorescence; to first order it is unaffected by
clouds.
Frankenberg, O’Dell, Gaunter,
McDuffie, AMT 2012



The awesomeness of 0C0O-2

Will take 50-100x as many o g
soundings as GOSAT. e A [T e g
Has small 1.5 km footprint R R Ry T
(compared to 10 km for | “ s
GOSAT)

AIRS

Will fly at the head of the “A-
Train”, a constellation of manyf =
earth-observing satellites in a &
polar, sun-synchronous orbit.

Amazing synergy is possible
with other instruments in A-
Train, particularly AIRS,
CloudSat+Calipso

Tentative Launch in July 2014



0C0-2 in the lab



0C0-2 being tested
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The

ESA Many
SCIAMACHY 30x60+ km
Japan CO2, CH4
GOSAT 10 km
NASA CO2
0OCO-2 1x1.5km
China CcO2
TanSat 2x1 km
ESA CO, CH4,,,,
TROPOMI 7x7 km
CNES/DLR CH4
MERLIN 50 km
Japan CO2, CH4
GOSAT-2 3-4km
CNES CO2
MicroCarb 15-25km?2
ESA CO2, CH4
CarbonSat 2x2 km
NASA CO2
ASCENDS
C02
Satellites :
Non-CO2
Satellites :

mission period Extended
Nominal mission period period
mission period

coming swarm of GHG satellites

(Calender year)

Funded

We are here.



