ATS 760 Global Carbon Cycle Atmospheric CO2 Observations
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Spatial Patterns of Interannual Variebility Atmospheric Carbon Observations
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Thomas Conway, NOA ESFL Carbon Gyce, Boulder, Golorado, (309) 497-6681, Tomas. conway@noaa gov. N waw s 1033 GouIgmdl focgg.

+ 1987-88 pulse originated in tropics, propagated to higher
latitudes

+ Minima in 1989, 92, 96, 99 mostly in NH
*+ Huge pulse in 1998 was global
+ Recent fluctuations driven strongly in NH

HIAPER HIPPO boat: NCAR Gulfstream V "HIAPER"
Pole-to-Pole

Observations
(HIPPO)

GV launch in the rain, Anchorage, January, 2009 (HIPPO-1)
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HIAPER Pole-to-Pole Obs The Warm and Cold Conveyor Belts

[Bader et al 1995, adapted from Carlson, 1980]

Signal? Noise? Which is which? Effects of height-time concentration variation
LAW ET AL.: USING HIGH TEMPORAL FREQUENCY DATA FOR CO, INVERSIONS near The ground
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Atmospheric CO2 Observations

Simulated PBL CO,

SiB2 coupled to CSU RAMS

Nocturnal respiration produces
extremely high concentrations in
morning stable layer

Surface heating and TKE
generation causes entrainment
of lower-CO, air from aloft
Photosynthesis depletes CO, in
surface layer

Buoyant plumes of low-CO, air
fill the convective boundary
layer

2008

Nighttime
100 ft. le

I

Sunset

I

Sunrise

N
[

CO2 (ppm)

330

Corn, as seen from 100 m

Summer, 2007

Scott Richardson & Tasha Miles, Penn State Univ
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Transport

Advection:

- Stuff that was “upstream” moves here with the wind:
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- To predict the future amount of ¢, we simply need to keep
track of gradients and wind speed in each direction

What spatial scales are involved?

Can we resolve advective transports by turbulent
eddies and convective clouds (thunderstorms) in a
global model?

- (No)

Atmospheric CO2 Observations

Synthesis Inversion Procedure
(“Divide and Conquer™)

1. Divide carbon fluxes into subsets based on processes,
geographic regions, or some combination
1. Spatial patterns of fluxes within regions?
2. Temporal phasing (e.g., seasonal, diurnal, interannual?)

2. Prescribe emissions of unit strength from each “basis
function” as lower boundary forcing to a global tracer
transport model

3. Integrate the model for three years (“spin-up”) from
initially uniform conditions to obtain equilibrium with sources
and sinks

4. Each resulting simulated concentration field shows the
“influence” of the particular emissions pattern

5. Combine these fields to “synthesize” a concentration field
that agrees with observations

Forward Transport Step

Temperate North America Pattern
Discretize emissions
into spatial and
seasonal “basis
functions”

* Obtain archived
winds from NWP
reanalysis, or run a
full GCM

* Advection by
resolved winds

+ Specify convective
transports: HOW?

Fossil Fuel Pattern

Scott Denning CSU ATS

Responses to Unit Flux from N.A.

+ Some models
(e.g., CSU) show
stronger
gradients near
source region

* Others (eg.,
GISS) appear
more thoroughly
“mixed”
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Fossil Fuel Response Functions Vertica] Structure: FF Response
+ Annual mean latitude-
. del pressure cross
Some models sections show strong
(e.g., CSIRO) sensitivity to vertical
show stronger mixing
gradients near - * Strong vertical
source region € ™ e 30 o0 0 60 90 gradient in NH
e MATCH:CCM3 - “Barrier” to cross-
* Others (eg., § o b e equator transport
UCT) appear - Reversed vertical
more 400 gradient in SH
thoroughly 600 - Most of NS structure
“mixed” 800 at surface in in NH
100%0 60 30 0 -30 -60 -90 SUbTr‘op'CS
Vertical Transport is Crucial Meridional Gradients

(Tans et al, 1990)

+ Some models treat
convection as “diffusive
mixing” between
adjacent layers

+ Others treat convection
as penetrative updrafts
and downdrafts
(“express elevators™)

* Much of the surface
structure actually
related to vertical
mixing

Simulated gradient way too steep for most
emission scenarios
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Air—Sea Exchange (WHOI)
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Atmospheric CO2 Observations

NEE (Land + Ocean + Fossil Fuel)
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