AT760 Global Carbon Cycle Atmospheric Transport Inversions

Consider Linear Regression

+ Given N measurements y; for different

Inverse Modeling
of Surface Ciope (m) and intercept () shat descrioe.

the “best” line through the observations
Carbon Fluxes - Why a ln?
- What do we mean by “best”
- How do we find m and b?
Please read Peters et al (2007) + Compare predicted values to observations,
and and find m and b that fit best

Explore the CarbonTracker website + Define a total error (difference between
model and observations) and minimize it!

Defining the Total Error Minimizing Total Error (Least Squares)
N N N
- Our model is V" =mx+b SSE=Y ¢! =), (v,=~y")" = X (v, -mx, =b)’
— - i=l i=1 i=l
- Error at any point is just & =i~ ~b ?
+ Could just add the error up: Ze/. :z (v, —mx, —b) 501
. A = Take partial derivs
+ Problem: positive and negative errors w0 o 3 3
cancel ... we need to penalize signs equally (SSE) I(SSE)
* Define the total error as the sum of the ] " o om 9b
Euclidean distance between the model and n{ | L : Set to zero
observations (sum of square of the errors): . h Solve for m and b
N N N ,. A
SSE = ZeiZ :z (y, _yippe )2 — z (yl _’nxi _b)2 . . ' \ypm'
i=1 i=1 i=1 n 3 an
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AT760 Global Carbon Cycle

Atmospheric Transport Inversions

Minimizing the Error

JSSE

) WZZNMZ’”Z)C,*ZZ)/,.:O Solve for b

. 2y y, -2y x, Plug this result into other
B 2N partial deriv, and solve for m

@

dSSE
() S, T Ex Y x 22Xy, =0

{2y - a T T 2Ty,

. (Exi)z} Txy NExY -IxXy
m 2 e =z Yo m:%
{ Xy XY~y -Gy @

Minimizing the Error (cont’ d)

4y mo N2 EXEY, . o
NZXE*(ZJC-)Z Plug (4) into (2) and simplify:
: i 1

NN NZX?‘(in)z

XyXx-ExXxy,
NExf—(Zx;)_

5) b

Now have simple “Least Squares” formulae for “best”
slope and intercept given a set of observations

Geometric View of Linear Regression

* Any vector a =(x,y,z) can be writtenas a
linear combination of the orthonormal basis
set (i.j.b) ,

+ This is accomplished by taking the dot product
(or inner product) of the vector with each
basis vector to determine the components in
each basis direction

* Linear regression involves a 2D mapping of an
observation vector into a different vector
space

* More generally, this can involve an arbitrary
number of basis vectors (dimensions)

Linear Regression Revisited

This notation can be rewritten in subscript notation: ¢ = >Gm,

and applied to a familiar problem. Imagine that there are 2 data
points (d;, d,) and 2 model parameters (m,, m,).

Then the system of equations could be explicitly written as:
d, =Gym, + G,m,
d, = Gym, + Gym,

Or in matrix form ¢ = Gm

With two points, this is just two slope-intercept form equations:
y,=mx; +b
y,=mx,+b

This is an "even-determined" problem - there is exactly enough
information to determine the model parameters precisely, there is
only one solution, and there is zero prediction error.
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Generalized Least Squares

d, G, G. - G| m m
d. G, Gn - . n.

3|
1

mu

dyv]l 1Gvw Gy - - Gullmy
d=Gim+Gom:+.... +Giumuy

—_ a1

m=G d

The G's can be thought of as partial derivatives
and the whole matrix as a Jacobian.

Atmospheric Transport Inversions

Linear Regression (again)

e
. e
re 2 =T 2 2 2
SSE:Z(d,—d," ) =é'e=leieren]| - |=elt+. ek
p

€x

=(d~a") +(d:=a?) +-Ad—d2)

2

SSE=g"; = (3_(;,;1)1(3 - Gin)
Take partial derivatives w.r.t. m, set to zero, solve for m.

The solution is

_, est AT A - AT —
m :[G G:l Gd

Matrix View of Linear Regression

d=Gm Solution
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Matrix View of Regression (cont’ d)

Perform the matrix inversion on G'G: Recall:
Sy Eal 1 [d b
(G7G) {fo Zi{?} 4 ‘MA)L ]
T 1 x 2x
@a Nfo-(Ex‘):LZX' N
Zx. Xx
NEx-(Exi) VEx-(Sx)
- -1
2, ] N ‘ R N in Z}’,
VEx-(Ex) VIx-(Ex) "=
zxi lez ley;
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Matrix View of Regression (cont’ d) TransCom Inversion Intercomparison
N X { 2y, }
it =
Yxi Xxi| [ Zxy,
Sy -YxXxy, o N2xY XX DY,
NYx -(2x) NEx - (Zx:)
" p - Discretize world into 11 land regions (by vegetation type)
XXXV, +NZJ€.Y, be Y 2X XXLXY, and 11 ocean regions (by circula%'ion feaxruregs) rp
NYxi-(2x;) Nzxf—(zxi)z * Release tracer with unit flux from each region during each
month into a set of 16 different transport models
Produce timeseries of tracer concentrations at each
observing station for 3 simulated years

Synthesis Inversion Near-Collinearity of Basis Vectors
2 Boreal Forest Sink ! Subarctic Atlantic Ocean Tundra sink
Decompose total emissions A ) -
into M “basis functions” di| |Gy G:. - - Gu|m 4 g ] | e ngg T e,
Use atmospheric transport d:| |Gy Gz - - - ||m: 2 q 5
model to generate 6 T o : a
Observe dand N locations d‘\’ Gw Gw G'IVM Mw 2 North Atlantic Gyre ] Temperate Forest Sink | North Pacific Ocean
Invert &to find m ; |k — oot
4 SFRImanmn om g ot R s
2
data transport 3 it ‘
4 ﬂuxes AL : , 60S 30S EQ 30N 60N
f Tropical Deforestation Equaterial Oceans
d=Gym + G,m, + ... + G ymy ok imepemE smad jE—ooTo0 S B e o o
-1 Simulated [CO5] - SPO
2
CO, sampled at location 1 partial derivative of Strength of emissions j
CO, at location 1 with of type 2 80S  30S o) 20N 6ON  60S  30S EQ 3N 6N
respect to emissions of
type 2
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“Dipoles”

Seasonal T errestrial Biosphere
Tracer Description

Fung CASA SiB2
T3 Subarctic Atlantic -0.40 -0.30 +0.05
Ty North Atlantic Gyre +0.69 +0.37 +0.57
Ts North Pacific +1.26 +0.64 +0.80
Te Equatorial Oceans +1.62 +1.62 +1.62
T, Southern Gyres -0.11 +0.15 +1.56
Tg Antarctic Oceans -0.50 -0.43 -0.30
Total Ocean Flux +2.56 +2.06 +4.31
Ty Tropical Deforestation 475 +6.04 12.98
Tyo NPP-based CO, Fertilization -422 -4.41 -9.56
Ty Water stress CO, Fertilization -2.69 -5.62 -14.41
Ty Temperate Forest Sink +0.39 +0.14 +3.83
T3 Boreal Forest Sink -8.29 -3.68 -4.45
Ty Tundra Sink +4.59 +2.55 +4.19
Total Terrestrial Flux -5.47 -4.97 <722

r.m.s. error (ppm) 0.39 0.35 041

a. Annual global fluxes in Gt C yr™'. All three scenarios include 6.0 Gt C yr™!. due to fossil fuel emis-
sions, and a net increase of 3.09 Gt C yr'! in the atmosphere

Atmospheric Transport Inversions

“Best Fit” Inverse Results

Rubber Bands

Prior estimates of
regional fluxes

Solution:
L5 luxes,

Concentrations

Observational

Data

+ Inversion seeks a compromise between
detailed reproduction of the data and fidelity
to what we think we know about fluxes

* The elasticity of these two “rubber bands” is
adjustable
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Bayesian Inversion Technique

concentration
data

a priori
emission

emission
estimate
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Bayesian Inversion Technique Bayesian Inversion Formalism

Our problem is ill-conditioned.

:nﬂ:;)::] conczr;tt;atmn Apply prior constraints and minimize a more
generalized cost function:
X
AL /AL N
@ @ Sm=3| Gi=d..) & =g (i, & Gi-rm,)|
data constraint prior constraint

@ - . AT A-1A A=l ! AT ~-l f— AL
mest:mp+(G CdG+Cm) G Cd (dobs_GmP)

emission
estimate ot /d' T T \
nferre .
Prior  Data  “Flux

flux  Guess  Uncertainty Uncertainty

observations

Uncertainty in Flux Estimates Covariance Matrices
B B N . o, 0 .. 0 * Inverse of a
Mies = 1+ GTCdG+Cm1) GTCd (dobs—Gmp) Od G 0 diagonal matrix is
] =l . obtained by taking
* _ (AT iy A1) R reciprocal of
Cm - C +Cm ) 2 . p
G CiG ¢ 0oy diagonal elements
o o + How do we set
* A posteriori estimate of uncertainty in the these?
estimated fluxes o o, 0 S0 . (It's an art))
+ Depends on transport (G) and a priori o & Om
uncertainties in fluxes (C,,) and data (C,) B
+ Does not depend on the observations per sel o 0 .o0g,
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Atmospheric Transport Inversions

Accounting for “Error”

Sampling, contamination, analytical accuracy
(small)

Representativeness error
(large in some areas, small in others)

* Model-data mismatch (large and variable)

* Transport simulation error (large for specific
cases, smaller for “climatological” transport)

- All of these require a “looser” fit to the data

Individual models: background fields

Annual Mean Results

Substantial terrestrial
sinks in all northern
regions is driven by data
(reduced uncertainty)

Tropical regions are very
poorly constrained (little
uncertainty reduction)

Southern ocean regions
have reduced sink
relative to prior, with
strong data constraint

Neglecting rectifier effect
moves terrestrial sink S
and W, with much
reduced model spread

Mt

Ao & Conia
e F Eavmata

]

Gurney et al, Nature, 2002

Sensitivity to Priors

Flux estimates and a
posteriori uncertainties
for data-constrained
regions (N and S) are very
insensitive to priors

Uncertainties in poorly
constrained regions
(tropical land) very
sensitive to prior
uncertainties

As priors are loosened,
dipoles develop between
poorly constrained regions
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