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Inverse Modeling  
of Surface  

Carbon Fluxes 
Please read Peters et al (2007) 

and  
Explore the CarbonTracker website 

Consider Linear Regression 

•  Given N measurements yi for different 
values of the independent variable xi, find a 
slope (m) and intercept (b) that describe 
the “best” line through the observations 
–  Why a line? 
–  What do we mean by “best” 
–  How do we find m and b? 

•  Compare predicted values to observations, 
and find m and b that fit best 

•  Define a total error (difference between 
model and observations) and minimize it! 

•  Our model is 
•  Error at any point is just  
•  Could just add the error up: 
•  Problem: positive and negative errors 

cancel … we need to penalize signs equally 
•  Define the total error as the sum of the 

Euclidean distance between the model and 
observations (sum of square of the errors): 
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Minimizing Total Error (Least Squares) 
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Take partial derivs 

Set to zero 

Solve for m and b 
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Minimizing the Error 
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Solve for b 

Plug this result into other 
partial deriv, and solve for m 
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Minimizing the Error (cont’d) 
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(4) Plug (4) into (2) and simplify:  
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Now have simple “Least Squares” formulae for “best” 
slope and intercept given a set of observations 

Geometric View of Linear Regression 
•  Any vector                   can be written as a 

linear combination of the orthonormal basis 
set  

•  This is accomplished by taking the dot product 
(or inner product) of the vector with each 
basis vector to determine the components in 
each basis direction 

•  Linear regression involves a 2D mapping of an 
observation vector into a different vector 
space 

•  More generally, this can involve an arbitrary 
number of basis vectors (dimensions) 

( , , )a x y z=!
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Linear Regression Revisited 
This notation can be rewritten in subscript notation: 

and applied to a familiar problem. Imagine that there are 2 data 
points (d1, d2) and 2 model parameters (m1, m2).  

Then the system of equations could be explicitly written as: 

d1 = G11m1 + G12m2 

d2 = G21m1 + G22m2 

 

Or in matrix form 

 

With two points, this is just two slope-intercept form equations: 

y1 = m x1 + b 

y2 = m x2 + b 

This is an "even-determined" problem - there is exactly enough 
information to determine the model parameters precisely, there is 
only one solution, and there is zero prediction error. 
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Generalized Least Squares 
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The G's can be thought of as partial derivatives 
and the whole matrix as a Jacobian. 
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Linear Regression (again) 
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Take partial derivatives w.r.t. m, set to zero, solve for m. 
 
The solution is 

Matrix View of Linear Regression 
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Solution 

Matrix View of Regression (cont’d) 
Perform the matrix inversion on GTG: 
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Matrix View of Regression (cont’d) 
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TransCom Inversion Intercomparison 

•  Discretize world into 11 land regions (by vegetation type) 
and 11 ocean regions (by circulation features) 

•  Release tracer with unit flux from each region during each 
month into a set of 16 different transport models 

•  Produce timeseries of tracer concentrations at each 
observing station for 3 simulated years  

Synthesis Inversion 
•  Decompose total emissions 

into M  “basis functions” 
•  Use atmospheric transport 

model to generate G 
•  Observe d and N locations 
•  Invert G to find m 
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data transport fluxes 

d1 = G11 m1   +   G12 m2   +   …   +   G1N mN 

CO2 sampled at location 1 Strength of emissions 
of type 2 

partial derivative of  
CO2 at location 1 with  
respect to emissions of  
type 2 

Near-Collinearity of Basis Vectors 
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“Dipoles” “Best Fit” Inverse Results  

Rubber Bands 

•  Inversion seeks a compromise between 
detailed reproduction of the data and fidelity 
to what we think we know about fluxes  

•  The elasticity of these two “rubber bands” is 
adjustable 

Prior estimates of 
regional fluxes 

Observational 
Data 

Solution: 
Fluxes, 
Concentrations 

MODEL 

a priori 
emission 

 
uncertainty 

concentration 
data  

 uncertainty 

emission 
estimate  

 uncertainty 

Bayesian Inversion Technique 
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MODEL 

a priori 
emission 

 
uncertainty 

 uncertainty 
reduction 

concentration 
data  

 uncertainty 

emission 
estimate  

 uncertainty 

Bayesian Inversion Technique 
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Our problem is ill-conditioned.  
Apply prior constraints and minimize a more 
generalized cost function: 

Bayesian Inversion Formalism 

Solution is given by 
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data constraint prior constraint 

Uncertainty in Flux Estimates 

•  A posteriori estimate of uncertainty in the 
estimated fluxes 

•  Depends on transport (G) and a priori 
uncertainties in fluxes (Cm) and data (Cd) 

•  Does not depend on the observations per se! 
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Covariance Matrices 

•  Inverse of a 
diagonal matrix is 
obtained by taking 
reciprocal of 
diagonal elements 

•  How do we set 
these? 

•  (It’s an art!) 
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Accounting for “Error” 

•  Sampling, contamination, analytical accuracy 
(small) 

•  Representativeness error  
(large in some areas, small in others) 

•  Model-data mismatch (large and variable) 
•  Transport simulation error (large for specific 

cases, smaller for “climatological” transport) 
•  All of these require a “looser” fit to the data 

Individual models: background fields 

Annual Mean Results 
•  Substantial terrestrial  

   sinks in all northern  
   regions is driven by data  
   (reduced uncertainty) 

•  Tropical regions are very  
   poorly constrained (little  
   uncertainty reduction) 

•  Southern ocean regions  
   have reduced sink  
   relative to prior, with  
   strong data constraint 

•  Neglecting rectifier effect  
   moves terrestrial sink S  
   and W, with much  
   reduced model spread 

Gurney et al, Nature, 2002 

Sensitivity to Priors 

•  Flux estimates and a 
posteriori uncertainties 
for data-constrained 
regions (N and S) are very 
insensitive to priors 

•  Uncertainties in poorly 
constrained regions 
(tropical land) very 
sensitive to prior 
uncertainties 

•  As priors are loosened, 
dipoles develop between  
poorly constrained regions 


