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Abstract

An intensive regional research campaign was conducted by the North American Carbon Program (NACP) in 2007
to study the carbon cycle of the highly productive agricultural regions of the Midwestern United States. Forty-five
different associated projects were conducted across five US agencies over the course of nearly a decade involving
hundreds of researchers. One of the primary objectives of the intensive campaign was to investigate the ability of
atmospheric inversion techniques to use highly calibrated CO2 mixing ratio data to estimate CO2 flux over the
major croplands of the United States by comparing the results to an inventory of CO2 fluxes. Statistics from
densely monitored crop production, consisting primarily of corn and soybeans, provided the backbone of a well
studied bottom-up inventory flux estimate that was used to evaluate the atmospheric inversion results. Estimates
were compared to the inventory from three different inversion systems, representing spatial scales varying from
high resolution mesoscale (PSU), to continental (CSU) and global (CarbonTracker), coupled to different transport
models and optimization techniques. The inversion-based mean CO2-C sink estimates were generally slightly
larger, 8–20% for PSU, 10–20% for CSU, and 21% for CarbonTracker, but statistically indistinguishable, from the
inventory estimate of 135 TgC. While the comparisons show that the MCI region-wide C sink is robust across
inversion system and spatial scale, only the continental and mesoscale inversions were able to reproduce the
spatial patterns within the region. In general, the results demonstrate that inversions can recover CO2 fluxes at
sub-regional scales with a relatively high density of CO2 observations and adequate information on atmospheric
transport in the region.
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Introduction

For over half a century, the analysis of trace gases in
the atmosphere has been a rich source of information
about the contemporary global carbon cycle. Early
studies of the secular trend and seasonal cycles of CO2

mixing ratio revealed the accumulation of fossil carbon
and the striking role of terrestrial ecosystems in plane-
tary metabolism, and by the mid-1960s scientists had
used spatial patterns in CO2 and its isotopic composi-
tion to establish rates of atmospheric mixing (Bolin &
Erickson, 1959; Bolin & Keeling, 1963), the penetration

of anthropogenic CO2 into the oceans, and the existence
of a net sink in the terrestrial biosphere (Bolin &
Keeling, 1963). Beginning in the 1980s, the global
network of sampling stations from which accurate CO2

measurements were available expanded rapidly with
CO2 measurements to support carbon cycle research.
Denser data allowed formal estimation of the spatial
patterns of sources and sinks at continental and ocean
basin scale using inverse modeling, which also required
quantitative accounting for atmospheric transport
(Pearman & Hyson, 1981; Heimann & Keeling, 1986;
Fung et al., 1987; Tans et al., 1990). A community of
global CO2 inverse modelers emerged during the 1990s
and performed a series of atmospheric transport
intercomparison (TransCom) experiments. TransCom
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documented the sensitivity of estimated source/sink
patterns to differences in advection, turbulence, and
cloud transport among atmospheric models (Law &
Simmonds, 1996; Denning et al., 1999; Gurney et al.,
2002; Baker et al., 2006).
Despite decades of measurements, modeling, and

field experiments, interactions between the carbon
cycle, climate, and management now constitute a lead-
ing source of uncertainty in projections of 21st century
climate change. Experiments with fully coupled carbon
cycle-climate models show a range of over 250 ppm in
CO2 by 2100 given identical fossil fuel emissions (Frie-
dlingstein et al., 2006; Solomon et al., 2007). Estimation
of space/time variations of carbon sources and sinks by
transport inversion provide an important constraint on
coupled Earth system prediction. Tracking interannual
variations in carbon source and sinks using transport
inversion of atmospheric observation has become
nearly routine in the 21st century (Peters et al., 2007,
2010). However, the relatively sparse data still require
aggressive regularization through the use of Bayesian
priors (Baker et al., 2006), geospatial smoothing (Michalak
et al., 2004), or pre-aggregation of sources and sinks into
coarse basis functions within which space/time patterns
of flux are assumed to be known (Peters et al., 2007).
Formal evaluation of the accuracy of regional sources

and sinks has remained elusive due to a lack of reliable
independent measurements of regional CO2 fluxes.
CO2 fluxes can be estimated locally by eddy covariance
(Baldocchi et al., 2012), but the area represented by
these estimates is generally a few square kilometers at
maximum, far smaller than can be estimated from
available concentration data. Field experiments during
which greatly enhanced data collection is performed
temporarily over a limited region and time period has
provided opportunities to evaluate transport inversions
(RECAB: Filippi et al., 2003; ChEAS: http://cheas.p-
su.edu/Chen et al., 2008; LBA: http://daac.ornl.gov/
LBA/lba.shtml, COBRA: Gerbig et al., 2003; CERES:
Dolman et al., 2006; ORCA: Goeckede et al., 2010a;
ACME-07: Desai et al., 2011). Even for such limited
regions, local bottom-up flux products (estimated from
surface data, in contrast to models) must be interpo-
lated across orders of magnitude of spatial scales to
provide a quantitative constraint on top-down fluxes
(estimated from atmosphere measurements).
As part of the North American Carbon Program

(NACP) (Wofsy & Harriss, 2002; Denning, 2005), the
Mid-Continent Intensive (MCI) field experiment was
designed to evaluate innovative methods for CO2 flux
inversion and data assimilation by performing quanti-
tative comparison of top-down and bottom-up inven-
tory estimates of a regional carbon budget. The
experiment was performed over a relatively flat,

heavily managed landscape in the mid-continent region
of North America and featured a high density of atmo-
spheric CO2 measurements (Ogle et al., 2006). A signifi-
cant advantage of the study region was the fact that
this area was relatively flat and devoid of complex
topography, that would have made the meteorology
more difficult to model for the inversions. Atmospheric
CO2 concentrations were measured using in situ analyz-
ers installed on a ring of communication towers in the
region (Miles et al., 2012), and vertical profiles of CO2

were measured by a short dense aircraft sampling cam-
paign (Martins et al., 2009). Another key advantage of
this region for the inventory compilation was the
detailed statistics available from US Department of
Agriculture on commodity production in this economi-
cally important region. Consequently, the bottom-up
inventory was developed at a high spatial resolution
compared to previous studies and provided highly
resolved maps of the annual uptake and release of CO2

by agriculture, forests, fossil fuel combustion, and
human respiration (West et al., 2011). In addition, sur-
face fluxes over croplands were also estimated by eddy
covariance (Meyers & Hollinger, 2004; Verma et al.,
2005) and used to evaluate bottom-up inventory
methods and as observational data for crop phenology
models (Lokupitiya et al., 2009) used by the inversions.
Our primary objective in this study was to compare

two sets of regional inversion estimates for the MCI
region to a bottom-up inventory of fluxes. Estimates
from a third inversion were also included, CarbonTrac-
ker (CT), which is a global scale inversion that does not
use the finer scale network of observations in the MCI
region. This inversion served as a standard for compar-
ison to evaluate the influence of the higher density
network on the inversion results, and we anticipated
that the regional inversions would provide a more
accurate estimation of CO2 flux in the MCI study. Our
secondary objectives were to explore reasons for differ-
ences between the inversion at both regional and sub-
regional scales, with a primary focus on atmospheric
transport, boundary inflow of CO2, and a priori CO2

flux estimates. This research extends work of Lauvaux
et al. (2012a,b), incorporates CO2 flux estimates from
the operational CT system (Peters et al., 2007), and
presents new results for the MCI following the method-
ology of Schuh et al. (2010). The three inverse analyses
presented span a range of spatial domains from global
to regional, and also a range of resolutions and differ-
ent techniques for regularization. Comparing their
results allows us to explore, for the first time, the
strengths and weaknesses of many methodological
choices in regional carbon analysis for an intensive
campaign (MCI) in which we have uniquely detailed
independent data from the bottom-up inventory.
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Materials and methods

Observational data

The two regional inversions both used data from a ring of five
towers (Miles et al., 2012; denoted from here on as the ‘Ring’).
These five sites (Fig. 1) were located in the MCI region of the

NACP (Ogle et al., 2006) and were outfitted with Picarro
cavity ring down analyzers (Crosson, 2008). Hourly averages
were computed from mixing ratios of CO2 recorded every 2 s,

with daily calibrations. The analyzers had related measure-
ment errors that were approximately 0.2–0.3 ppm for the
hourly average mixing ratio data used in the two inversions

(Richardson et al., 2012). The towers were instrumented begin-
ning in May 2007. In addition to these data, both inversions
used calibrated CO2 data from the 40 m Missouri Ozarks
Ameriflux tower (Stephens et al., 2011) at the southern edge of

the domain as well as NOAA-ESRL data from the WLEF tall
tower in Wisconsin at the northern end of the domain and the
WBI tall tower in the center of the domain.

Inversions

Most trace gas inversions use the same basic principles and

structure that includes observations of trace gas concentra-
tions, a priori estimates for trace gas fluxes, a mapping from
fluxes to observations based upon an atmospheric transport

model and an optimization of trace gas fluxes to minimize
residuals between modeled trace gas concentrations and
observed trace gas concentrations. There is a rich literature on
the subject and several applications to CO2 fluxes (Tarantola,

1987; Enting et al., 1994; Evensen, 1994; Bishop et al., 2001;

Whitaker & Hamill, 2002; Tippett et al., 2003; Zupanski, 2005;
Peters et al., 2007; Lokupitiya et al., 2008). The goal of all three
inversions in this article, labeled as the Penn State University

(PSU) inversion, Colorado State University (CSU) inversion,
and CT inversion, is to provide time-varying mean and covari-
ance estimates for a set of spatial CO2 fluxes covering the MCI

region that are consistent with observed CO2 concentrations.
A simplified flowchart of the atmospheric inversion technique
is provided in Fig. 2 and the main differences among the three
inversion frameworks are summarized in Table 1. After

describing the domain for each inversion, a summary of
differences among the three frameworks is given with respect
to the following components (listed in Fig. 2): ‘Optimization’,

‘Atmospheric Transport’, ‘A priori CO2 fluxes’, ‘Boundary
Inflow CO2’, and ‘Observed CO2’.

Spatial domain and resolution. The PSU inversion was run

on a rectangular domain which overlapped portions of the
non-rectangular MCI domain. Consequently, estimates for the
PSU inversion were lacking for some areas in the MCI and

were provided for some areas not in the MCI. As a result, we
often present estimates for two areas, (i) the full MCI and (ii)
the intersection of the PSU inversion domain and the MCI,
which covers approximately 71% of the MCI domain. The

CSU domain consisted of most of North America and
extended out into the oceans to the east and west. Both
domains are shown in Figure A1. The CT domain is global.

The CSU inversion domain consisted of a grid of 200 km by
200 km gridcells over most of North America with higher
resolution grid of 40 km by 40 km grid cells over the MCI,
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Fig. 1 Map of MCI domain located in north central United States.
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covering the entire underlying transport grid. The PSU inver-

sion domain consisted of a grid of 20 km by 20 km gridcells
over their transport grid. Both can be seen in Figure A1. The
CSU and PSU inversion systems are grid based and allow flux

adjustments to each individual grid cell of their inversion
domain, relative to constraints imposed by a priori flux covari-
ances. The CT inversion grid consists of ecoregions as seen in

Figure A2. The CT system scales each individual ecoregion’s
net ecosystem exchange (NEE) up or down each week and
does not have the ability to provide any sub-ecoregion level
flux adjustments (i.e. all cells are adjusted in the same manner

within the region). The effect of the inversion resolution is
tightly coupled to the a priori covariance assumptions which
will be discussed later. It is important to note that due to the

sparseness of available CO2 observations, the resolution of the

inversion domain is coarser than that of the underlying trans-
port and a priori fluxes.

Optimization and temporal resolution. The CSU inversion

technique is a weekly sequential Bayesian batch inversion pro-
viding optimized total respiration (OPT_TRESP) and gross
primary production (OPT_GPP) on a weekly time scale at

40 km by 40 km over the MCI and 200 km continentally. A
priori total respiration (TRESP) and gross primary production
(GPP) are independently ‘corrected’ via regression factors,

bTRESP and bGPP applied to the a priori fluxes. The model and
associated cost function, F(x), for a particular week, or ‘cycle’
are as follows:

OPT TRESPðx; y; tÞ ¼ bTRESPðx; yÞTRESPðx; y; tÞ ð1Þ

OPT GPPðx; y; tÞ ¼ bGPPðx; yÞGPPðx; y; tÞ ð2Þ

OPT NEEðx; y; tÞ ¼ OPT RESPðx; y; tÞ $ OPT GPPðx; y; tÞ ð3Þ

FðbÞ ¼ 1

2
½ðb $ b0Þ

TB$ 1
b$ b0

ðb $ b0Þ þ ðHðb ' fluxpriorÞ

$ obsÞTR$ 1ðHðb ' fluxpriorÞ $ obsÞ( ð4Þ

where B and R are the associated covariance matrices for the a
priori flux corrective factor errors and the model/data mis-

match, where b is the true but unknown correction factor on
the fluxes and b0 is the assumed correction factor, a priori. H is
the observation operator providing the mapping from the flux

space to concentration space and obs is the observed CO2

vector.
The PSU inversion technique is a weekly sequential

Bayesian batch inversion providing optimized estimates of
daytime NEE and nighttime NEE on a 7.5 day time scale at
20 km by 20 km spatial resolution. In contrast to optimizing
‘correction factors’ as the CSU inversion does, the PSU inver-

sion directly optimizes the fluxes. The associated cost function
is as follows:

Table 1 Comparison of inversion model components

CarbonTracker CSU (SiB-RAMS-LPDM) PSU (WRF-LPDM)

Inversion method Ensemble Kalman filter Synthesis Bayesian Synthesis Bayesian
Transport TM5 BRAMS 3.2* WRF-Chem

Land surface model† TESSEL SiB3-CROP NOAH
A priori CO2 fluxes/photosynthesis
model type

CASA (LUE) SiB3-CROP (Farquhar) SiB3-CROP (Farquhar)‡

Domain Global Continental (North America) Regional
Transport resolution 3 9 2deg (1 9 1 deg nest) 40 km 10 km
Inversion resolution Ecoregions (Olsen) 40 km/200 km nest§ 20 km

Boundary CO2 None (global) CarbonTracker and GlobalView Aircraft-corrected
CarbonTracker

*BRAMS 3.2 was used as the basis for the transport model but the code has undergone numerous changes, fixes, and improvements

over the last decade at Colorado State University.
†The LSM used to drive the meteorology in the inversion, not necessary consistent with the LSM used to generate the a priori CO2

fluxes.
‡CarbonTracker posterior CO2 fluxes were also used in Lauvaux et al. (2012a,b) but not shown here.
§See notes in Inversions section.

Fig. 2 Flowchart of atmospheric inversion process.
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F ¼ 1

2
½ðflux $ fluxpriorÞTB$ 1

flux$ fluxprior
ðflux $ fluxpriorÞ

þ ðHðfluxÞ $ obsÞTR$ 1ðHðfluxÞ $ obsÞ( ð5Þ

where B and R are the associated covariance matrices for the a
priori flux errors and the model/data mismatch. H is the
observation operator providing the mapping from the flux
space to concentration space and obs is the observed CO2 vec-

tor. We note that the PSU inversion was run from June
through December of 2007 due to its domain and dependency
on the Ring data which began in June 2007. Where annual
totals were required, a priori CO2 distributions were used. This

is not likely to be a critical limitation to the comparison, how-
ever, because the dominant fluxes are occurring between June
and August. In addition, the PSU inversion uses an a priori
annual flux consistent with the removal of harvested crops
and thus one would not expect large differences in the optimi-
zation during January through May, when respiration is the

primary CO2 flux.
The NOAA ‘CT system is based on a sequential ensemble

Kalman filter (EnKF) framework and provides optimization of
NEE from 2000 through 2009 on a weekly time scale at the res-

olution of ‘ecoregions’. The correction to NEE is performed
multiplicatively similar to the CSU inversion although the
complete procedure is more complicated (Supporting Infor-

mation, Appendix A2). Although the statistical procedure is
applied to ecoregions, the results are often presented as the
ecoregion correction factor applied to the higher resolution

underlying a priori flux field, which gives an artificial sense of
precision. We present mean results from CT in this fashion
but use fractional ecoregion-wide uncertainty for the variabil-
ity estimates.

Atmospheric transport. The WRF-Chem (Skamarock et al.,
2005) was used for transport by the PSU inversion system at a
resolution of 10 km by 10km. A CSU version of the Brazilian

Regional Atmospheric Modeling System (BRAMS) was used
for transport in the CSU model at a resolution of 40 km by
40 km (Pielke et al., 1992; Denning et al., 2003; Nicholls et al.,
2004; Wang et al., 2006; Corbin et al., 2010; Schuh et al., 2010).
Transport fields are provided for CT by the TM5 model (Krol
et al., 2005), and those winds are derived from the ECMWF

operational forecast model. Model resolution is 6° by 4° glob-
ally with nests down to 1° by 1° over the United States. The
main difference here is that the regional models will be more
accurate at resolving synoptic scale transport, i.e. storms, and

vertical transport near the surface due to more highly resolved
vertical grids.

The Lagrangian particle model LPDM (Uliasz & Pielke,

1991; Uliasz, 1993, 1994, 1996) is used by both PSU and CSU. It
effectively acts as a transport adjoint (i.e. ‘inverse’) by diag-
nosing turbulent motions in the atmosphere as a function of

high time resolution fields of zonal and meridional winds,
potential temperature, and turbulent kinetic energy output
from a parent mesoscale model. This allows for the creation of
a Jacobian matrix representing the partial derivatives of CO2

concentration (at a fixed location) with respect to the sur-
rounding fluxes of CO2. The details of the Lagrangian model
that produces the particle movements from the parent

mesoscale model can be found in Uliasz (1994) and there are

many applications in the literature (Zupanski et al., 2007;
Lauvaux et al., 2008, 2012b; Schuh et al., 2009, 2010). Further
details on this technique can be seen in the Supporting Infor-

mation, Appendix D1.

A priori CO2 fluxes. The inversions use a priori CO2 flux dis-
tributions that are Gaussian in nature and are thus composed

of mean and covariance information.
Means: The a priori flux assumptions for the CSU and PSU

regional models are based on the Simple Biosphere model

(SiB), a land surface parameterization scheme originally used
to compute biophysical exchanges in climate models (Sellers
et al., 1986), but later adapted to include ecosystem metabo-
lism (Denning et al., 1996; Sellers et al., 1996). The photosyn-

thesis in SiB follows the Farquhar approach (Farquhar et al.,
1980). A phenology-based crop module was then added to SiB
and is detailed in Lokupitiya et al. (2009). This model was

used in two ways. First, hourly CO2 fluxes were calculated
from offline runs of the model driven by North American
Regional Reanalysis meteorological data, at 40 km by 40 km

resolution and 10 km by 10 km resolution, respectively, with
three sub-gridscale landcover patches for each configuration.
Secondly, the CSU model also ran test cases in which the
SiB-CROP model was run in coupled-mode inside of BRAMS

in an effort to provide consistency between the modeled CO2

fluxes and the meteorological data.
For CT, the a priori NEE estimates are recreated from

CASA-GFEDv2 model runs of the Carnegie-Ames Stanford
Approach (CASA) biogeochemical model, which employs a
light use efficiency (LUE) photosynthesis model based upon

AVHRR NDVI and year-specific weather. Global 0.5° by 0.5°
resolution monthly output from the CASA-GFEDv2 model
(van der Werf et al., 2006) for GPP and TRESP is scaled down
to 3 hourly fluxes using a simple Q10 relationship and a linear

scaling for photosynthesis based upon ECMWF analyzed
meteorology. These are then differenced to provide diurnally
varying NEE, while conserving monthly mean NEE in a man-

ner similar to that of Olsen & Randerson (2004). The most
significant differences between the CT inversion and regional
inversions is the lack of an explicit crop model and the lack of

explicit sub-daily predictions of C exchange in CASA-
GFEDv2.

Covariances: For the CSU inversion, a priori covariance matri-
ces for the multiplicative biases on GPP and TRESP (b factor

in Eqn 4) were formed by constructing isotropic exponential
spatial covariance structures over North America with decor-
relation length scales of 500 and 1000 km (more information

available in the Supporting Information, Appendix A4) and
scaling them to 0.2, which amounts to standard deviations of
20% on GPP and TRESP. A priori covariance assumptions for

the PSU inversion, i.e. Bflux$ fluxprior (see Eqn 5), included smaller
decorrelation length scales (exponential covariance) of approx-
imately 300 km, compared to the CSU inversion which gener-
ally employed 500 and 1000 km for results shown in this

article. The smaller decorrelation length scales of the PSU
inversion were further decreased by modeling the covariance
length scale as a function of ecosystem type, resulting in

© 2013 Blackwell Publishing Ltd, Global Change Biology, 19, 1424–1439
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equivalent isotropic decorrelation length scales of approxi-

mately 100 km. The temporal correlations were calculated
consistent with Lauvaux et al. (2009). More information on a
priori covariance of flux fields in the PSU inversion is available

in the Supporting Information, Appendix A4 and Lauvaux
et al. (2012b). There are no explicit spatial correlation assump-
tions in CT due to the use of larger ecoregions in its optimization

but the a priori standard deviations are 0.85 on each ecoregion,
amounting to a standard deviation of 85% of a prioriNEE.

The main difference in covariance structures between the
inversions is directly related to the ability of the inversions to

assign, or adjust the prior based on the observed CO2 concen-
trations, on a finer scale within the MCI region. The PSU
inversion has the most freedom to make fine scale adjustments

due to smaller spatial correlations followed by the CSU inver-
sion with a moderate ability to correct subregional fluxes. The
CT inversion is limited to multiplicative corrections on NEE

which are equally applied across the ecoregions (Figure A2)
and thus is the most restricted.

Boundary inflow CO2. While global inversion systems like

CT inherently have no boundaries, regional inversion results
can be very sensitive to boundary conditions, i.e. the inflow of
CO2 from the boundaries of the model domain (Goeckede
et al., 2010b; Gourdji et al., 2012). The CSU inversion benefits

from much lower variability in boundary inflow due to its
eastern and western boundaries being over the ocean. This
will make boundary bias corrections easier than correcting for

boundary inflow over locations with more variability in CO2

fluxes occurring in the middle of the continent (PSU).
However, the distance between the boundaries of the

domain and the boundaries of the MCI make the CSU inver-
sion dependent upon optimized fluxes over the continent with
much weaker observational constraints. In particular, the CSU
inversion utilizes inflow estimates (optimized CO2) from the

global CT inversion system with a bias correction based on
interpolated global CO2 from NOAAs GlobalView (GV) prod-
uct while the PSU inversion also utilizes optimized CT CO2

bias corrected with routine NOAA aircraft flights near their
domain boundaries (Lauvaux et al., 2012b). We provide results
with both bias-corrected and uncorrected CT inflow for the

CSU inversion and detail the bias correction procedure in the
Supporting Information, Appendix A3.

Observed CO2. The PSU and CSU inversions both used the

Ring data while using slightly different data streams from
NOAA tall towers at WLEF in Wisconsiin and WBI in Iowa.
The PSU inversion used data from 122 m at WLEF and 99 m
at WBI meters to be consistent with the other tower heights

while the CSU inversion used the highest levels for WLEF and
WBI which are 396 and 379 m, respectively. The full observa-
tional constraints for the PSU and CSU inversions are summa-

rized in Table 2. As mentioned earlier, the PSU inversion only
ran from June through December. The CSU and CT inversions
used data from the NOAA WLEF and WBI tall towers from

January to May and otherwise were constrained by the sparser
continental network. The effect of the data gap on the PSU
inversion is probably minimal in this study because of the a

priori knowledge that a large percentage of the Net Primary

Production is removed from the study region and not avail-
able for decomposition, however, we emphasize that, in gen-
eral, this should not be the case.

The CT inversion is nearly real-time operational and uses
global in situ as well as flask-collected data in its flux optimi-
zation (Peters et al., 2007). An important note is that it does

not use the Ring data situated in the heart of the MCI region
(Miles et al., 2012). Modified runs were performed with the
data from the Ring for 2008. However, the inclusion of the
data did not significantly alter the cropland flux estimates,

instead increasing uptake in upwind grassland/shrub areas
to the west and no additional diagnosis was performed to
determine the exact cause of the insensitivity of local fluxes to

the Ring data. Therefore, the original and publicly available
flux estimates (CarbonTracker, 2009) were used in this study.
The lack of any sensitivity of CT to the Ring data, and inabil-

ity to optimize subregional fluxes, were two particular rea-
sons that mesoscale inversions were employed in this study.

Specified model-data mismatch errors (the R matrix in
Eqns 4 and 5) correspond to posterior model fits of the observa-

tions and thus, theoretically, are generally not available before
the inversion step is run. The errors in the CSU inversion are
thus formed by running the inversion initially using differ-

ences between the a priorimodeled CO2 concentrations and the
observations and then reducing this a priori error by a some-
what arbitrary 40%. To create the model-data mismatch in the

PSU inversion, R, the framework used a combination of projec-
tions of boundary layer depth errors and forward-adjoint con-
sistency to create the errors. The CT system uses subjective
choices for the errors which depend upon the location of the

observing tower and how well the authors felt that the trans-
port model, TM5, could reproduce local atmospheric motions
there (see Supplementary Material, Peters et al., 2007). All three

inversions calculate the chi-square innovation statistic and use
this value to scale the a priori model-data mismatch to guaran-
tee that they do not overestimate or underestimate the model-

data mismatch a priori, which reduces some of the apparent
dependency on the initial setting of R described above.

Inventory methods

A bottom-up CO2 flux inventory was compiled for the MCI
region for evaluating against the atmospheric inversion
results. This inventory utilizes data on forest biomass, har-

vested woody products, and agricultural soil C from the US
Greenhouse Gas Inventory (EPA, 2010; Ogle et al., 2010), in
addition to fine resolution data on fossil and biofuel CO2 emis-

sions (Gurney et al., 2009), CO2 uptake by agricultural crops
and grain harvest (West et al., 2011), and CO2 losses through
livestock and human respiration associated with agricultural

products (West et al., 2011). Uncertainties were derived from a
Monte Carlo analysis in which probability distribution func-
tions were developed for the flux estimates from each of the
sources and random draws were made to produce 100 realiza-

tions of the total flux in the region. The carbon inventory was
constructed on an annual time frame, due to temporal limita-
tions in the FIA and harvest statistics, and was derived from
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spatial data with a US county level resolution. For example,
US counties in Iowa are very homogenous in size and shape

and have a resolution of approximately 40 km by 40 km and
thus the county sizes are comparable to the 0.5° by 0.5° resolu-
tion grid cells used to display the inventory.

Results

Bottom-up annual inventory of CO2 fluxes

Based on the bottom-up inventory analysis, sources of
CO2 in the MCI domain are dominated by fossil fuel
combustion (262 TgC source), in particular the city of
Chicago (Gurney et al., 2009). Inversions usually
consider fossil fuel fluxes as ‘known’ and without error
and optimize the nonfossil fuel CO2 fluxes due to better
knowledge of fossil fuel combustion when compared to
natural biospheric fluxes and difficulties optimizing
very localized point sources of CO2. The nonfossil fuel
inventory data show a net CO2 uptake of 135 TgC for
2007 and are shown in Fig. 3. The flux is dominated by

the harvest and export of grain from the region (West
et al., 2011). Smaller sources and sinks associated with
feedlots, forests, other natural vegetation, and human
respiration also contribute to the total. Uncertainty for
the nonfossil inventory is largely dominated by the har-
vest product while relative uncertainties, i.e. standard
deviation in NEE as function of mean NEE, is largest
for the FIA forest product. The spatial correlations in
the inventory impact the region-wide uncertainty and
can be better understood by an investigation of Fig. 3
of Cooley et al. (2012). Using a Monte Carlo analysis
based on uncertainties in each component flux, we con-
structed 95% confidence limits on the CO2-C balance
(net fossil fuels) of the MCI domain which resulted in a
sink of $ 104 to $ 204 TgC for 2007 (mean: $ 135 TgC).

Annual CO2 fluxes from inversions

The results for all three inversions are statistically indis-
tinguishable from the inventory results for the annual

Table 2 CO2 observations

Site Height Contact PSU inversion CSU inversion
CarbonTracker
inversion

Argyle, ME 107 m A. Andrews, NOAA-ESRL Outside domain 12:00–18:00 LST 12:00–16:00 LST

Centerville, IA 110 m N. Miles/S. Richardson,
Penn State U

All hours 12:00–18:00 LST Not used

Candle Lake, BC 30 m D. Worthy, EnviroCanada Outside domain 12:00–18:00 LST 12:00–16:00 LST

Fraserdale, ON 40 m D. Worthy, EnviroCanada Outside domain 12:00–18:00 LST 12:00–16:00 LST
Galesville, WI 122 m N. Miles/S. Richardson,

Penn State U
All hours 12:00–18:00 LST Not used

Kewanee, IL 140 m N. Miles/S. Richardson,
Penn State U

All hours 12:00–18:00 LST Not used

Park Falls, WI 122 m/396 m A. Andrews, NOAA-ESRL All hours (122 m) 12:00–18:00 LST (396 m) 12:00–16:00 LST
(396 m)

Lac Labiche, AB 10 m D. Worthy, EnviroCanada Outside domain 12:00–18:00 LST 12:00–16:00 LST
Metolius, OR 33 m M. Goeckede/Beverly Law,

Oregon State University
Outside domain 12:00–18:00 LST Not used

Mead, NE 122 m N. Miles/S. Richardson,
Penn State U

All hours 12:00–18:00 LST Not used

Missouri

Ozarks, MO

30 m N. Miles/S. Richardson,

Penn State U

All hours 12:00–18:00 LST Not used

Round Lake, MN 110 m N. Miles/S. Richardson,
Penn State U.

All hours 12:00–18:00 LST Not used

Sable Island, NS 25 m D. Worthy, EnviroCanada Outside domain 12:00–18:00 LST 12:00–16:00 LST

West Branch, IA 99 m/379 m A. Andrews, NOAA-ESRL All hours (99 m) 12:00–18:00 LST (379 m) 12:00–16:00 LST
(379 m)

Moody, TX 457 m A. Andrews, NOAA-ESRL Outside domain 12:00–18:00 LST 12:00–16:00 LST

Observations used by inversions. All towers used by PSU inversion were used by CSU inversion. Additional towers were used by
CSU due to larger domain size. CarbonTracker use of data, common to PSU and CSU inversions, is shown as ancillary information.

CarbonTracker is a global inversion framework and thus makes use of large amounts of data outside of North America which are
not detailed here. Although custom filtering of observations is inversion dependent as well as dependent upon quality flags/opera-
tibility of the towers, the times for considered data in each inversion are given in the table. PSU inversion uses all hours
but with different weightings for different times of day and therefore nocturnally collected data is usually weighted more weakly,

see Lauvaux et al. (2012b).
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net CO2 budget of the region (Fig. 4). After correcting
the regional inversions for boundary inflow, all three
inversion estimates show a slightly stronger sink than
the inventory (CT = $ 155 ) 173 TgC, PSU = $ 140 ) 26
TgC for reduced ‘PSU domain’, CSU = $ 145 ) 29 TgC).
The difference in the inversion system results was
primarily influenced by the a priori flux uncertainty
estimates, i.e. the initial range for the ‘best guess’ NEE.
The CSU inversion used independent ) 20% standard
deviations for GPP and TRESP fluxes which is equiva-
lent to an enormous range of possible flux results. The
particular choice of 20% comes from the desire to keep
correction factors positive, ensuring positive optimized
GPP and TRESP. These conservative choices introduce
flux scenarios that could be well outside the range of
reasonableness, for example a 20% increase in annual
TRESP and 20% reduction in annual GPP, relative to a
balanced biosphere would cause a C source on the
order of 300 TgC. It is important to note that the vari-
ability around the CT estimate is unrealistically large.
This is well known and documented (CarbonTracker,
2011). However, the predictions generally appear more
accurate than would be inferred from the formal flux
uncertainty.
The three inversions produce similar spatial patterns

in annual NEE compared to the inventory, with an
important sink in the center of the domain correspond-
ing roughly to the highest density of agricultural area
(Fig. 5). However, at finer scales, the location of the
maximum of uptake and the shape of the sink area var-
ies substantially among the inversions. To evaluate this
pattern, the inversion results were compared to the
inventory data from the individual grid cells. Scatter-
plots of annual NEE values for the inversions vs. the
inventory are shown in Fig. 6. Correlations with the
inventory are higher for the CSU (r = 0.76) and PSU
(r = 0.55) inversion results. The weaker correlation of

the CT results with the inventory (r = 0.36) can be seen
along with a bimodal feature in the figure.
Much of the spatial structure in the estimated maps

of net annual flux is driven by the structure of the
Bayesian a priori mean and the optimization method in
each inversion model, i.e. the degree to which the
inversion framework allows for independent adjust-
ments to the a priori fluxes given the observed CO2

data. The CSU inversion shows a strong correlation
with the a priori June/July/August uptake in the
region, but with a weaker C sink in Illinois and a stron-
ger C sink in western Iowa. The spatial resemblance to
the inventory is likely due to the strong 500–1000 km a
priori decorrelation lengths used in the inversion and
the strong summer time CO2 deficit. Using a 500-km
decorrelation length as an example, and noting that the
width of Iowa is about 500 km, the inversion would
assume that a weekly multiplicative error in GPP on
one end of Iowa is correlated with an error in GPP on
the other end of Iowa at a level of 0.37, a priori. Posterior
correlations were reduced by about half although the
reduction was different for GPP and TRESP and not
isotropic, instead following the sampling gradient.
There were no significant differences between using
500 and 1000 km on the regional NEE (Table 3).
The smaller a priori decorrelation length scales used

in the PSU inversion, approximately five times less that
those used in the CSU inversion, lead to much finer
spatial adjustments in the a priori fluxes within the
region. The PSU inversion shows a very large sink in
the eastern part of the domain (northern Illinois),
20–30% larger than the inventory estimate in the area,
as well as a stronger more diffuse sink to the northeast
of the domain, an area of larger uncertainty in the
inventory.
In contrast, the strongest sink for the CT inversion is

located in the extreme northwest portion of the MCI

Inventory 2007 annual NEE mean (GgC per 0.5°x 0.5°)
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Fig. 3 Annual NEE estimate by the inventory components. Mean estimates are shown in left panel and standard deviations are shown

on right side. Note that the distribution of the inventory is not necessarily Gaussian and therefore, in a rigorous sense, the standard

deviation is simply a measure of uncertainty.
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although the overall sink appears more diffuse. This is
likely due to a strong flux in the prior for this particular
area of the MCI and may be a result of inadequate crop
modeling in CASA, which does not explicitly account
for agricultural crops. Northern portions of the MCI
have strong influences from soybeans and spring
wheat, but these crops do not assimilate as much car-
bon during the peak of summer according to the inven-
tory and eddy covariance studies (Lokupitiya et al.,

2009), suggesting that a mix of wheat and soybeans
contributes a weaker NEE signal than a mix of
soybeans and corn. Overestimating the flux in the
northwest portion of the MCI led to the bimodal distri-
bution in flux mismatch between the CT inversion and
inventory that was apparent in Fig. 6.
Although not included in Fig. 4, we also assessed the

variability in CO2 inflow and its effect on the PSU and
CSU inversions. For the CSU inversion, this sensitivity
can be viewed in Table 3 while a general discussion of
the inflow uncertainty for both regional inversions is
provided later.

Transport and boundary inflow considerations

The transport and inflow boundary conditions could
also influence the pattern and strength of fluxes within
the region. However, the transport fields produced
from the mesoscale models displayed a surprising
amount of similarity. Despite different mesoscale mod-
els, PBL schemes, land surface models, and external
forcing scales in time and space, differences in time-
space integrated afternoon observation footprints for
the towers in the aaa‘ring’ remained on the order of
20% of the absolute signal or less, varying as a function
of distance from the tower (Supporting Information,
Appendix D). Among the differences between the
transport fields that could not be immediately
explained, was the sensitivity to surface fluxes as a
function of distance from tower. The RAMS model
(CSU) appeared to show weaker sensitivity in the local
vicinity of the tower and a stronger long-distance sensi-
tivity than the corresponding WRF model (PSU).
In addition, regional inversion results can be sensitive

to boundary conditions, i.e. the inflow of CO2 at the
boundaries (Goeckede et al., 2010b; Gourdji et al., 2012).
We evaluated the influence of inflow boundary condi-
tions on the CSU inversion by using the CT-optimized
CO2 as inflow with and without corrections for a known
Northern Hemispheric seasonal bias. Bias correction to
the CT optimized CO2 inflow reduced the CSU sink in
the MCI by approximately 33%, from 174 TgC to 117
TgC in the ‘online’ case, while reducing the continental
sink (data not shown) by 62% (1.6–0.6 PgC) providing
better agreement with independent CO2 inventory
estimates for North America (King et al., 2007). This
inflow sensitivity is consistent with the findings of
others who used similar methodologies (Gourdji et al.,
2012). Furthermore, this adjustment to boundary inflow
in the CSU inversion appeared, to first order, to simply
shift the posterior annual NEE up or down. Similar
results are summarized for the PSU inversion in the
Supporting Information (Appendix A3) and Lauvaux
et al. (2012b).
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Fig. 4 Densities for annual NEE for inversion results and inven-

tory (2007). Top panel shows results for the intersection of the

PSU inversion model domain and MCI domain while bottom

panel shows results for the entire MCI region. PSU inversion is

based on SiB3-CROP offline prior. CSU inversion is also based

on SiB3-CROP offline prior with GV-bias-corrected CT inflow.

These results include explicit variability estimates that were

constructed for the inventory using a Monte Carlo anlysis and

variability estimates that arise naturally from the matrix-based

atmospheric inversion procedure. CarbonTracker variability

was approximated by summing fractional ecoregion-wide vari-

ability for each ecoregion which occurred in the MCI. Variability

estimates were unrealistically large and thus no effort was made

to include the whole pdf in the image. The CT mean is indicated

by a filled square. The variability induced by varying inflow

CO2 or underlying transport model characteristics is not implic-

itly included here but can be seen in Table 3.
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We conducted an additional test by evaluating the
CSU inversion results outside of the MCI for consis-
tency with the bias-corrected inflow used by the PSU
inversion. Inflow estimates for the Kewanee tower were
calculated from the CSU inversion by subtracting out
the effect of the PSU inversion region from the CSU

modeled Kewanee CO2. In this fashion, we were able to
compare the expected inflow at the Kewanee tower
from the boundaries of the PSU inversion region, for
both the CSU and PSU inversion systems. Posterior
inflow estimates for the CSU inversion at the boundary
had a correlation of 0.82 compared to 0.41 for the a
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priori inflow estimates and the mean difference between
the CSU inflow estimate and the PSU bias-corrected
inflow estimate dropped from 2.8 to 1.8 ppm. Thus,
despite limited towers outside of the MCI, the CSU
inversion appeared to provide inflow estimates at the
MCI boundary which were more consistent with the
bias-corrected CT inflow. However, a positive annual
difference exists in the inflows, 1.8 ppm. If this differ-
ence is allocated to the PBL, roughly 1/7 of the atmo-
spheric column, and spread evenly over the MCI
region, it appears to provide an explanation for the fact
that the CSU CO2 sinks are often 10–15% stronger than
the PSU CO2 sinks (Table 3).

Discussion

Continental and meso-scale inversions were developed
for 2007 using a relatively high density of observations
in the MCI region. These data were compared to a bot-
tom-up inventory and a global inversion framework,
CT, which did not assimilate the higher density of CO2

observations in the region. NEE flux estimates are simi-
lar among inversions, even from the CT system, and
are reasonable for 2007 in the sense that they are statis-
tically consistent with the inventory. These results are
promising because they show that CO2 inversion meth-
ods can be robust, in the sense that they deliver similar
inverse flux solutions which are consistent with C
inventory results, despite being constructed across very
different frameworks, e.g. global to continental to regio-
nal, with very different assumptions. Nevertheless,
comparisons to the inventory at spatial scales finer than
100–200 km and finer temporal scales on the order of
weeks (data not shown), demonstrate the value of
higher resolution inversion systems that can benefit
from finer scale observations in terms of recovering
finer CO2 flux patterns within a region.

The agreement of large-scale posterior CT CO2 fluxes
to the inventory, despite major differences in fine scale
flux signals may be fortuitous. The minimum scale of
the gradients of CO2 resolved by the CT transport
model TM5 at 1° by 1° resolution is likely in the
200–300 km range. However, the region was chosen to
avoid complex meteorology induced by land-sea
contrasts or complicated topography. Hence, if the
observations used by CT constrain the MCI domain
reasonably well, it is certainly reasonable to recover
large-scale agreement in flux estimates. Nevertheless,
the very nature of the coarse inversion region used by
CT (Supporting Information, Appendix A1) prohibits
the CT system from recovering fluxes on most scales
less than the MCI region and forces strong coherence to
a priori CASA flux patterns at higher resolutions. Fur-
thermore, the lack of higher resolution attribution of
flux errors might limit this type of inversion from being
used to further future prognostic carbon cycle model-
ing efforts.
The PSU inversion framework uses the most highly

constrained area, i.e. an area slightly larger than the
Ring of towers. The advantages of this are that they use
a wealth of eddy covariance tower data to help con-
strain the a priori fluxes as well as provide more flexibil-
ity spatially to adjust fluxes. This was shown in
Lauvaux et al. (2012b) to allow some degree of robust-
ness of the posterior flux result to distinct underlying a
priori flux fields. Therefore, given dense enough obser-
vational coverage of CO2, one would expect to be able
to proceed toward improvements in prognostic carbon
cycle modeling where this is not possible with the CT
inversion system. The disadvantage of this particular
inversion is that the corrections to inflow on the sides of
the domain will likely be larger and more variable than
those made over marine boundary layer conditions and
require the use of aircraft to obtain vertical profiles.
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The CSU inversion is largely a compromise between
the CT and PSU systems. Boundary inflow corrections
are still necessary because of the regional nature of the
inversion but are made over marine boundary sites that
are generally less variable in time and space and
observed with the operational NOAA flask network.
This tends to preserve the a priori flux gradients around
the perimeter of the MCI because rapid flux adjust-
ments are not needed to force agreement between
tower observations and model observations close to the
model domain boundary. The disadvantage is the need
for a unified framework to simultaneously model the
more densely observed MCI region and the rest of the
continent. This topic was studied recently (Wu et al.,
2011), but the heterogenous nature of the evolving CO2

observing network probably demands continued inves-
tigation especially as satellite observations of CO2

become available. Furthermore, the impact of estimat-
ing (i) NEE, (ii) day/night NEE, or (iii) total respiration
and GPP upon the inversions is still uncertain and
remains an active research question.
With respect to our secondary objectives, differences

between the inversions and inventory were influenced
by boundary inflow estimates of CO2, a priori flux sig-
nals and differences in transport. As can be clearly seen
from Table 3, the domain wide flux is most strongly
influenced by the inflow estimates. Finer spatial scale
flux variations then result from differences in transport
and a priori flux patterns. Increased observations in the
inversion domain should lessen the impact of the a
priori flux assumptions, but the inflow estimate errors
generally remain a systematic error, which must be cor-
rected in an independent manner. Inflow corrections
were performed using the GV NOAA product and
the NOAA weekly aircraft samples as the basis of
the bias correction scheme to the optimized global
CT CO2 product and significantly improved the
accuracy of the inversion results we showed. This dem-
onstrates the importance of maintaining well calibrated
global CO2 networks and in particular aircraft profile
programs with respect to estimating regional carbon
budgets with CO2 data. Differences in the bias-
corrected inflow estimates between the two regional
inversion appeared to be the primary cause of the
differences in the annual CO2 flux estimates from the
MCI region as a whole.
Posterior variance estimates of CO2 exchange con-

tinue to be one of the most difficult estimates to make
for inversion modelers. Variance estimates from these
CO2 inversion systems are sensitive to both inversion
method and a priori covariance specifications. For
example, posterior covariance from EnKF methods
such as used for CT are strongly dependent upon the
particular EnKF algorithm (Tippett et al., 2003). The a

priori flux variances are generally very conservative on
annual scales. Standard deviations of 85% on ecore-
gion-wide NEE for CT and standard deviations (inde-
pendent) of 20% for TRESP and GPP for the CSU
inversion led to a large range of possible net fluxes; far
stronger annual sources and sinks than could be possi-
ble given global constraints and thus sufficiently con-
servative. Shortages of ancillary information on NEE,
such as spatially dense eddy covariance observations or
temporally and spatially rich biomass accumulation
statistics often necessitate ‘broad’ a priori covariance
structures be used in inversion systems attempting to
estimate fluxes over continental or larger regions. While
inversion modelers can attempt to control for portions
of this uncertainty, i.e. model methodology, other por-
tions such as ancillary data to constrain the fluxes a
priori are generally outside of their control. Neverthe-
less, results from this study showed that quite good
agreement can result from two inversions (CSU and
PSU) where different a priori flux uncertainties, as well
as system and method, were used.
In summary, regional flux estimates from each of the

three frameworks agreed well with the estimates pro-
vided by the inventory data, but the continental and
meso-scale inversions were better able to recover the
spatial pattern of fluxes in the region. We consider this
a first step toward ascertaining feasibility of the CO2

inversion method to produce regional carbon flux
estimates as would be done under a monitoring pro-
gram. Moreover, this study shows that atmospheric
inversions are capable of capturing regional CO2 flux
estimates at sub-national scales, scales which will be
useful for future carbon-cycle research and regional
greenhouse gas initiatives. The most critical next steps
are to further refine the inversion frameworks to better
quantify boundary inflow uncertainty, sensitivity to a
prior flux estimates, and to provide explicit character-
izations of transport variability as well as leverage
the most recent and comprehensive sources of data
on CO2.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Data S1. Appendices.
Figure A1. Inversion domains shown in native polar stereographic projections. Left panel (A) shows nested inversion grid with
coarser grid at 200 km by 200 km and fine grid over MCI at 40 km by 40 km. Right panel (B) shows high resolution 20 km by
20 km grid for PSU inversion system.
Figure A2. CarbonTracker ecoregion-based inversion domain. Figure courtesy of NOAA-ESRL.
Figure C1. Time series of net ecosystem exchange (NEE) estimates from a variety of inversion models for 2007. PSU inversion is
based on SiB3-CROP offline prior. CSU inversion is also based on SiB3-CROP offline prior with GV-bias corrected-CT inflow.
Results from PSU inversion are from the intersection of PSU inversion domain and MCI domain while the results for the Carbon-
Tracker and CSU inversions are on the MCI domain.
Figure D1. Sensitivity of daytime observations of passive surface flux to daytime passive flux releases during June, July, and
August. Left panel shows results for PSU transport with WRF and LPDM and middle panel shows results for CSU transport
with RAMS and LPDM. Right panel shows the difference. Releases were constant 1 lmol C m$ 2 s$ 1 over the PSU inversion
domain (subset of MCI) and passive signal was integrated over this same area for both models.
Figure D2. Sensitivity of daytime observations of passive surface flux to nighttime passive flux releases during June, July, and
August. Left panel shows results for PSU transport with WRF and LPDM and middle panel shows results for CSU transport
with RAMS and LPDM. Right panel shows the difference. Releases were constant 1 lmol C m$ 2 s$ 1 over the PSU inversion
domain (subset of MCI) and passive signal was integrated over this same area for both models.
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