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Stochastic modeling of soil water fluxes in the absence of measured hydraulic parameters requires a 
knowledge of the expected distribution of the hydraulic parameters in different soil types. Predictive 
relationships describing the hydraulic parameter distributions must be developed based on the common 
descriptors of the physical properties of soils (e.g., texture, structure, particle size distribution). Covari- 
ation among the hydraulic parameters within these relationships must be identified. Data for 1448 soil 
samples were examined in an evaluation of the usefulness of qualitative descriptors as predictors of soil 
hydraulic behavior. Analysis of variance and multiple linear regression techniques were used to derive 
quantitative expressions for the moments of the hydraulic parameters as functions of the particle size 
distributions (percent sand, silt, and clay content) of soils. Discriminant analysis suggests that the covari- 
ation of the hydraulic parameters can be used to construct a classification scheme based on the hydraulic 
behavior of soils that is analogous to the textural classification scheme based on the sand, silt, and clay 
content of soils. 

INTRODUCTION 

Application of the classical theory of soil water movement 
requires knowledge of the relationships among matric poten- 
tial, moisture content, and hydraulic conductivity. The physi- 
cal attributes of the soil giving rise to these interrelationships 
are understood in a qualitative sense [e.g., Childs, 1969]. A 
comprehensive theory to allow derivation of the relationships 
from fundamental properties of the medium (e.g., grain size 
distribution) is, however, not yet fully developed, although 
recent work suggests that certain aspects of the hydraulics 
may be amenable to a theoretical treatment [Nakano, 1976; 
Arya and Paris, 1981]. In most cases, curves of matric poten- 
tial versus moisture content (the moisture characteristic) and 
of hydraulic conductivity versus either matric potential or 
moisture content must be determined for a given soil by direct 
measurement. Statistical analyses can be used to identify what 
soil properties are important in describing the observed vari- 
ation in these curves, thereby providing information of practi- 
cal value as well as suggesting how theoretical exploration 
might proceed. 

One approach that has been used to define the moisture 
characteristic is the construction of regression equations to 
predict the moisture content at specified values of matric po- 
tential using properties such as bulk density, percent sand, and 
other measured properties such as organic matter content 
[Ghosh, 1980; Gupta and Larson, 1979; Rawls and Brakensiek, 
1982]. Results from these studies indicate that reasonable pre- 
dictions can be made when the necessary data are available. 

An alternate approach that has proven useful when data on 
grain size distribution are not available is to parameterize the 
moisture characteristic and then to investigate parameter 
variability with respect to soil physical properties. Brakensiek 
et al. [1981] and McCuen et al. [1981] examined the Brooks- 
Corey and Green-Ampt parameters using data from Holtan et 
al. [1968] and Rawls et al. [1976]. Brakensiek et al. [1981] 
examined the distribution of these parameters across textural 
classes defined on the U.S. Department of Agriculture (USDA) 
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soil triangle. Various transforms of the data were applied to 
arrive at normal distributions of the parameters across all 
textural classes. The means and standard deviations of each 
parameter within a textural class were reported for each trans- 
form. Correlations among the parameters within a textural 
class were also given. No attempt was made to determine 
whether a regular pattern of variation in the parameters oc- 
curred across textural classes, and no explanation was offered 
for the observed correlations within classes. McCuen et al. 
[1981] established that the Brooks-Corey and Green-Ampt 
parameters differ significantly across textural classes. They 
also reported means, standard deviations, and simple corre- 
lations for the parameters within each textural class. The pa- 
rameter statistics were presented overlain on the USDA tex- 
tural triangle. The authors concluded that while there were 
trends obvious in the variations of the parameters over the 
triangle, there were numerous "irrational" results and con- 
cluded that a clear answer could not be obtained regarding 
the systematic individual variation of the parameters. They 
then examined the collective variation of the parameters using 
multivariate analysis of variance followed by a discriminant 
analysis. These results indicated that a weighted combination 
of the parameter values (i.e., a discriminant score) showed a 
more rational variation over the textural triangle. Again no 
attempt was made to relate the observed variation of means 
and standard deviations to the the physical properties of the 
textural classes. They emphasized that while the tabulated sta- 
tistics of the individual parameters for each class provided a 
useful approximation to the hydraulic behavior of the soils, 
these statistics ignored important interrelationships in the pa- 
rameters. Clapp and Hornberger [1978] also analyzed a por- 
tion of the data. They noted that the slope of the moisture 
characteristic curve was correlated with the clay fraction of 
the textural class. 

The present paper provides an extension of the work de- 
scribed above. First, we wanted to determine if there was sig- 
nificant variation of the soil moisture parameters with physi- 
cal properties of the soil other than texture. Second, we 
wanted to quantify, if possible, any observed relationships be- 
tween the statistical properties of the parameters and the 
physical properties of the soils. Third, we wanted to extend the 
investigation begun by McCuen et al. [1981] into the inter- 
relationships among the parameters. 

682 



683 COSBY ET AL.: SOIL MOISTURE CHARACTERISTICS 

TABLE 1. List of Sample and Site Descriptors and the Classes for 
Each Descriptor 

Descriptor Classes 

Texture 

Horizon 
Moist 

consistency 
Structural 

size 
Structural 

form 

Roots 

Topography 
(local slope) 

Drainage 

Land use 

sand (14), sandy loam (124), loamy sand 
(30), loam (103), silty loam (394), 
sandy clay loam (104), silty clay loam 
(325), clay loam (147), sandy clay (16), 
silty clay (43), light clay (148) 

A (488), B (795), C (165) 
very friable (248), friable (643), firm 

(390), very firm (74), unclassified (93) 
very fine (66), fine (520), medium 

(560), coarse (129), unclassified (173) 
platy (50), prismatic (113), blocky 

(176), subangular blocky (621), granular 
(337), crumbly (13), massive (98), 
unclassified (40) 

abundant (220), common (345), few (314), 
none (269), unclassified (300) 

0-2% (402), 2-7% (735), 7-14% (220), 14- 
25% (58), 25-55% (16), unclassified (17) 

very poor (27), poor (65), somewhat poor 
(161), moderate (337), well (794), 
somewhat excessive (27), excessive (33), 
unclassified (4) 

long-term pasture (628), long-term 
cultivated (629), long-term forest (124), 
long-term idle (67) 

The number in parentheses is the number of samples in each classi- 
fication. Texture, land use, and horizon were available for all samples. 
Other descriptors were not always available for each sample. Un- 
classified samples were not included in statistical analyses using that 
descriptor. 

DATA AND METHODS 

The data are from Holtan et al. [1968] and Rawls et al. 
[1976]. The soil samples used to generate these data were 
taken from 35 localities in 23 states in the United States. In 
each testing area, several sampling sites were chosen and all 
horizons were subsampled. For each subsample the following 
hydraulic data are available: (1) moisture retention on a 
weight-weight basis determined at 0.1, 0.3, 0.6, 3.0, and 15.0 
bars using ceramic plate and membrane techniques, (2) bulk 
density measured by displacement of the sample dried to 0.3 
bar tension, (3) saturated hydraulic conductivity determined 
(usually in duplicate) in the laboratory using a 1-inch slice of a 
fist-sized fragment trimmed to roughly cylindrical shape. De- 
tails of the methods used are given by Holtan et al. [1968] and 
Rawls et al. [1976]. The weight-weight moisture retention 
data were converted to volume-volume measures (O) for each 
matric potential (W), and the saturated water content (Os) was 
determined for each sample using the bulk density and as- 
suming a specific gravity of 2.65 for all solids. All matric po- 
tentials were converted to centimeters of water. 

We chose to use what we consider to be a minimal set of 
parameters to describe the hydraulic properties. Two of these, 
the saturated hydraulic conductivity Ks and the saturated 
moisture content Os are measured quantities in the data set. 
The other two (Ws and b) are derived by fitting a power func- 
tion, 

= s(O/Os) 

to the moisture retention data. The two derived parameters 
are thus •s, the "saturation" matric potential, and b, the slope 
of the retention curve (on a logarithmic graph). The b ex- 

ponent and Ks can be used to estimate the entire hydraulic 
conductivity-moisture content curve [Campbell, 1974]. 

Forms other than (1) have been used to represent the mois- 
ture characteristic. The most widely used of these is the one 
from Brooks and Corey [1964]. That equation requires esti- 
mation of an additional parameter, the residual saturation. 
Brakensiek [1979] points out that the formulation which in- 
cludes the residual saturation "generally gives a better fit to 
the moisture retention data." We argue that the limited 
number of measurements taken for each sample (five values of 
O and •) and the large amount of variability in the available 
data suggest that a simpler representation of the hydraulic 
properties is desirable for our purposes. Also, some studies 
indicate that the power function form is entirely adequate 
[e.g., Ghosh, 1980]. Thus we use (1). 

For each sample, values of log •s and b were determined by 
taking the logarithm of both sides of (1) and performing a 
linear regression. A preliminary analysis of the results indicat- 
ed that Os, log •s, and b were approximately normally distrib- 
uted over all of the samples. No further transformations of 
these data were undertaken before the statistical analysis. If 
duplicate measurements of K s were available for a sample, a 
geometric mean of the values was used. The Ks values were 
log transformed before the statistical analyses since they were 
highly skewed. 

The combined data sets contained 1873 soil samples. Only 
those samples were used for which moisture characteristics 
and saturated conductivities were both available. Additionally, 
samples texturally classified as rock fragments or identified as 
R horizon were deleted. This resulted in 1448 samples for 
analysis. No further a priori selection of the data was attemp- 
ted. 

For each of the 1448 samples, descriptions of the physical 
properties of the soil and characteristics of the sampling site 
are available [Holtan et al., 1968; Rawls et al., 1976]. Each 
descriptor consists of several classes; every set of hydraulic 
parameters was assigned to one class of each descriptor based 
on the information in the data set. The descriptors and their 
classes are summarized in Table 1. Once the hydraulic param- 
eters and descriptor classifications had been determined for all 
samples, the analysis proceeded in four stages. 

First, a one-way analysis of variance was performed for 
each descriptor to determine if the hydraulic parameters 
varied significantly over the classes of that descriptor. That is, 
we wanted to determine if patterns existed in the individual 

TABLE 2. Values of Percent Silt, Sand, and Clay Content Used for 
Each Textural Class in the Regression Analyses 

Percent Percent Percent 
Class Silt Sand Clay 

Sand 5 92 3 
Loamy sand 12 82 6 
Sandy loam 32 58 10 
Loam 39 43 18 
Silty loam 70 17 13 
Sandy clay loam 15 58 27 
Clay loam 34 32 34 
Silty clay loam 56 10 34 
Sandy clay 6 52 42 
Silty clay 47 6 47 
Clay 20 22 58 

The percentages were obtained from midpoint values of each tex- 
tural class using the USDA textural triangle. 
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Fig. 1. (a) The USDA soil texture triangle. (b) Reclassification of the texture categories into four broad regions for the 
two and four group discriminant analyses. 

hydraulic parameters that could be described by what was 
known of the physical properties of the sample or site. Since 
all of the descriptors are qualitative rather than numerical, a 
nonordinal technique (analysis of variance) was applied at this 
stage. That is, correlations or regressions between parameter 
values and descriptor classes cannot be calculated since it is 
not possible to associate sensible numerical values with many 
of the descriptor classifications. Instead, the analysis of vari- 
ance provides a means to determine whether or not the pa- 
rameter distributions change from one class of a descriptor to 
another. Once a descriptor that is associated with variation in 
a parameter has been identified, further attempts can be made 
to quantify the relationship (see below). 

Second, a two-way analysis of variance was performed to 
determine if there was overlapping information about the hy- 
draulic parameters contained in the soil or site descriptors 
identified in the first analysis. For instance, one would expect 
that texture and structure would be closely related, and if a 
given parameter varied significantly over textural classes, it 
would be expected to vary also over structural classes. In an 
analysis of variance (either one or two way) the fraction of the 
total variance in a parameter that is attributable to member- 
ship in classes of some descriptor can be estimated. If two 
descriptors, each identified by a one-way analysis of variance 
as being important, are included simultaneously in a two-way 
analysis and if the proportion of parameter variance attribu- 
table to class memberships in the two-way analysis is essen- 
tially the same as that attributable to class membership of 
either descriptor alone, then the information contained in the 
two descriptors is redundant. In such a case, either descriptor 
will suffice to describe all that can be known of the parameter 
variation. We decided (see results) that a single descriptor, 
texture, can account for most if not all of the discernible pat- 
terns in the individual parameters. 

These results led to the third stage of the analysis, an at- 
tempt to quantify the pattern over the textural classes to pro- 
vide a predictive relationship for the hydraulic parameters. 
Although Holtan et al. [1968] did assign a textural class to 
each sample, no actual particle size distribution data were 
available. We adopted the approach of Clapp and Hornberger 
[1978] and assigned values of percent silt, sand, and clay to 
each textural class based on the midpoint values of each tex- 
tural class on the U.S. Department of Agriculture [1951, p. 
209] textural triangle. These percentages are given for each 

textural class in Table 2; the triangle is reproduced in Figure 
la (Figure lb will be referred to in the results section). Using 
these percentages for each textural class, a multiple linear re- 
gression analysis was performed using the average value of 
each parameter (or log-transformed parameter) within a given 
textural class as the dependent variable and the 11 sets of size 
fraction data in Table 2 as the independent variables. A 
second multiple linear regression analysis was performed using 
the standard deviations of each parameter within a class as the 
dependent variable and the percentages in Table 2 as the inde- 
pendent variables. Knowing not only the mean but also the 
variance of a parameter within a textural class as a function of 
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Fig. 2. Values of the F ratios from the one-way analyses of variance. 
The dashed line represents a significant result (p = 0.10). 
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Fig. 3. Percent of variance explained by each factor in the two- 
way analyses of variance. The dashed line represents the percent of 
variance explained by texture alone. 

groups defined by textural classes. The resulting discriminant 
functions (i.e., weighted linear combinations of the hydraulic 
parameters) can be considered to define a new space (by defin- 
ing new coordinate axes) that contains not only the infor- 
mation derived from the univariate analyses but also the im- 
portant interactions of the original parameters. The discrimi- 
nant space, as shown below, displays a striking resemblence to 
the textural space defined by the silt, sand, clay triangle, fur- 
ther reinforcing the results of the univariate analysis. 

We should point out that we are here interested in an ex- 
ploratory statistical analysis of the data and not in a conven- 
tional hypothesis-testing analysis. "Data-dredging" procedures 
[Selvin and Stuart, 1966] are often used in the examination of 
data sets not collected as part of an experiment to test a 
specific hypothesis. Such procedures may be useful for suggest- 
ing hypotheses (to be tested using independently collected 
data), but the strict interpretation of statistical tests may be 
inappropriate. Thus we are concerned only with exposing 
"robust" (i.e., well-defined) relationships in the data; precise 
measures of significance are not of concern. Violations of the 
assumptions of analysis of variance are therefore not crucial in 
this work, particularly since these violations (e.g., heterosce- 
dasticity) will only result in reduced efficiency of estimation 
and not in bias [Kendall and Stuart, 1968]. 

The statistical analyses were performed using the Statistical 
Packager or the Social Sciences [Nie etal., 1975]. The routines 
were implemented on a CDC CYBER 730-2 at the University 
of Virginia. A discussion of all methods used can be found in 
the works by Cooley and Lohnes [1971], Kendall and Stuart 
[!968], Nie et al. [1975], and Tatsuoka [-1971]. 

sand, silt, or clay content has obvious advantages in interpret- 
ing or modeling soil water variability. 

The analyses in the first three stages were concerned only 
with how each hydraulic parameter individually may depend 
on the physical properties of the soil. There exists the obvious 
possibility that the parameters covary and that some linear (or 
nonlinear) combination of the parameters are related to the 
physical properties of the soil. The fourth stage of the analysis 
attempted to address this question of covariability of the hy- 
draulic parameters. A discriminant analysis using the hy- 
draulic parameters was performed with the discriminant 

RESULTS 

One-Way Analysis of Variance 
The results of the one-way analysis of variance (ANOVA) 

are presented graphically in Figure 2. The height of each bar 
represents the value of the F ratio derived from the one-way 
ANOVA for each parameter for each descriptor. Since F is the 
ratio of the parameter variance between groups to the param- 
eter variance within groups, a large value of F indicates a 
significant change in the parameter distribution from class to 
class of the descriptor. The number of degrees of freedom for 
each test can be calculated from the data given in Table 1. The 

TABLE 3. Means and Standard Deviations for the Four Hydraulic Parameters in Each Textural Class 

b log W s log Ks Os 
, 

Class n Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Sandy loam 124 4.74 1.40 1.15 0.73 -0.13 0.67 43.4 8.8 
Sand 14 2.79 1.38 0.84 0.56 0.82 0.39 33.9 7.3 
Loamy sand 30 4.26 1.95 0.56 0.73 0.30 0.51 42.1 7.2 
Loam 103 5.25 1.66 1.55 0.66 -0.32 0.63 43.9 7.4 
Silty loam 394 5.33 1.72 1.88 0.38 -0.40 0.55 47.6 5.4 
Sandy clay loam 104 6.77 3.39 1.13 1.04 -0.20 0.54 40.4 4.8 
Clay loam 147 8.17 3.74 1.42 0.72 -0.46 0.59 46.5 5.4 
Silty clay loam 325 8.72 4.33 1.79 0.58 -0.54 0.61 46.4 4.6 
Sandy clay 16 10.73 1.54 0.99 0.56 0.01 0.33 40.6 3.2 
Silty clay 43 10.39 4.27 1.51 0.84 -0.72 0.69 46.8 6.2 
Light clay 148 11.55 3.93 1.67 0.59 -0.86 0.62 46.8 3.5 
All classes 1448 7.22 3.86 1.59 0.70 0.42 0.64 45.7 6.1 

Parameters' b is the slope of log W versus log (O/Os) regression, W in centimeters H20; log •s is the 
intercept of log ß versus log (O/Os) regression, ß in centimeters H20; log K s is the log of the saturated 
hydraulic conductivity in inches per hour; OsiS the saturated water content in percent (volume/volume). 
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dashed line in Figure 2 represents a significance level of 
p = 0.10 for each result. Examination of the figure shows that 
at the p = 0.10 level, all parameters show significant variation 
on all descriptors (with the exception of log W, analyzed with 
horizon). Finding a significant result for all descriptors is not 
surprising given the large size of the data set. We are, however, 
interested only in robust relationships (i.e., very large values of 
F) between the hydraulic parameters and the soil descriptors. 
By this criterion, the two shaded bars for each parameter 
represent the two most important descriptors for that parame- 
ter. In all cases, texture is one of the two most important. 

Two-Way Analysis of Variance 
This led us to examine the degree of overlap in information 

between the descriptors using a two-way analysis of variance 
with texture always one of the two categories. The results of 
the two-way ANOVA are presented in Figure 3. The height of 
each bar represents the percent of the total variance in each 
parameter attributable to membership in the classes of texture 
and each other descriptor. The dashed line is equal to the 
percent of the total variance attributable to membership in the 
classes of texture alone (from the preceding one-way analysis 
of variance). For each bar representing texture with some 
other descriptor, the unshaded portion represents the percent 
of the parameter variance attributable to texture when that 
descriptor is entered first in the analysis, and the shaded por- 
tion represents the amount of residual variance attributable to 
the additional descriptor. Several things are apparent from 
Figure 3. The proportion of the total variance in a parameter 
that can be attributed to a combination of texture and some 
other descriptor is essentially the same in all cases as that 
attributable to texture alone. This implies that the information 
about parameter variability that each descriptor other than 
texture contains (see Figure 2) is redundant information. For 
the available set of data, texture alone should suffice to de- 
scribe all that can be known, in practical terms, of the parame- 
ter variability. 

In the few cases where the second descriptor explains a 
sizable proportion of the variance, the results must be inter- 
preted cautiously. For example, consider the analysis of ©s 
with texture and moist consistency. In this case, the explained 
variance is roughly equally divided between texture and moist 
consistency. However, the total variance explained is only 
slightly greater than the variance explained by texture alone. 

TABLE 4. Results of Multiple Linear Regression Analyses on the 
Means and Standard Deviations of the Parameters 

Parameter Intercept Variable Slope R2 AR2 p n 

Mean b 3.10 

Mean log W s 1.54 

Mean log K s -0.60 

Mean Os 50.5 

S.D. b 0.92 

S.D. log W s 0.72 

S.D. log K s 0.43 

S.D. Os 8.23 

% clay 0.157 0.966 0.001 11 
% sand -0.003 0.966 0 0.769 
% sand - 0.0095 0.809 0.001 11 
% silt 0.0063 0.850 0.041 0.180 
% sand 0.0126 0.839 0.001 11 
% clay -0.0064 0.872 0.033 0.193 
% sand -0.142 0.771 0.001 11 
% clay 
% clay 
% silt 
% silt 
% clay 
% silt 
% clay 
% clay 
% sand 

-0.037 0.785 0.014 0.484 
0.0492 0.524 0.012 11 
0.0144 0.584 0.060 0.314 

-0.0026 0.096 0.355 11 
0.0012 0.111 0.015 0.716 
0.0032 0.369 0.047 11 
0.0011 0.403 0.034 0.519 

-0.0805 0.567 0.007 11 
-0.0070 0.574 0.007 0.721 
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Fig. 4. Plots of the mean values of the hydraulic parameters for 
each textural class versus the most important variable (percent sand, 
silt, or clay) determined from the multiple linear regression analysis. 
The solid line is the univariate regression line. 

The total explainable variance is fixed by the data; the appor- 
tioning of that variance to each descriptor when the infor- 
mation in each descriptor is redundant will be determined by 
the design of the analysis and may vary as the design varies. 
Also note that while all 1448 samples were assigned to a tex- 
tural class, some of the samples were not classified on the 
other physical descriptors (e.g., moist consistency, see Table 1). 
This resulted in different degrees of freedom for each two-way 
ANOVA and is responsible for the different apportioning of 
the variance and the fact that in some cases the total ex- 
plained variance in an analysis containing texture with a 
second descriptor is slightly less than the variance explained 
by texture alone. Put another way, several of the two-way 
ANOVA's in Figure 3 were performed on a subsample of the 
total data set and thus cannot be expected to apportion the 
variance identically to an analysis performed on the entire 
data set. Nonetheless, by the previous criterion of robustness it 
is apparent from Figure 3 that the additional information 
from a second descriptor beyond that provided by texture 
alone is marginal. 

Multiple Linear Regression Analysis 
As a first step in examining the dependence of the parame- 

ters on textural class, the means and standard deviations of 
each parameter for each textural class were calculated. The 
values are given in Table 3. Multiple linear regression (MLR) 
analysis was performed on the means and standard deviations 
of each parameter using the percent sand, silt, and clay values 
for each textural class as the independent variables. Note that 
there are really only two independent variables for each class 
since the sum of percent sand plus silt plus clay must equal 
100. The MLR analysis was designed to pick the most impor- 
tant variable (in the sense of most parameter variance ex- 
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Fig. 5. Plots of the standard deviations of the hydraulic parame- 
ters within each textural class versus the most important variable 
(percent sand, silt, or clay) determined from the multiple linear regres- 
sion analysis. The solid line is the univariate regression line. 

plained by the' regression) from sand, silt, or clay and, having 
corrected for the linear relationship in that variable, select the 
second most important variable from the two remaining. This 
procedure was also applied to the raw data for each class to 
check the regressions on the parameter means of each class. 
The slopes and intercepts for regressions using mean values 
(11 classes) were essentially the same as those using the raw 
data (1448 samples). No such check could be performed for 
the standard deviations of each class. 

Table 4 summarizes the results of the MLR procedure. The 
table gives the intercept of the multiple regression, the most 
important (top) and second most important (bottom) variable, 
the regression slope for each variable, the R e (proportion of 
sum of squares) value for the regression when only the first 
variable is included (top) and when both are included 
(bottom), the increase in R 2 as a result of adding the second 
variable, and the significance of each variable in the regres- 
sion. As can be seen, for all cases except the standard devi- 
ation of log T•, there was only one significant variable in the 
regression (p - 0.10). The standard deviation of log Ts had no 
significant relationship to percent sand, silt, or clay. The 
ANOVA results for log • depended solely on the fact that 
the mean of log •s varied over textural classes. For the other 
three parameters, however, both the means and standard devi- 
ations of the parameters varied as a function of soil textural 
class. This result has not been reported in other analyses of 
these data, and its importance will be discussed below. Figures 
4 and 5 show the class means and standard deviations of each 
parameter plotted against the most important variable, per- 
cent sand, silt, or clay, as determined by the MLR procedure. 
The solid lines included in Figures 4 and 5 are the univariate 
(not multivariate) regression lines for each parameter on the 
most important variable. The slopes, intercepts, r 2 values, and 

significances of these univariate regressions are presented in 
Table 5. The univariate regression equations are very similar 
(but not identical) to the multivariate results in Table 4. The 
similarity derives from the fact that the second variable in 
each of the multivariate regressions is not very important (in 
the sense that the increase in R • due to the second variable is 
small relative to the overall R • value). By the previous cri- 
terion of robustness, a univariate regression of each parameter 
should be sufficient to describe most of the variability in hy- 
draulic parameters over textural classes. The univariate results 
in Table 5 represent predictive relationships for the hydraulic 
parameters based on knowledge of the physical properties of 
soils. Using the multivariate regressions as predictive relation- 
ships results in only a marginal increase in information. 

To assess the power of these regression relationships to ex- 
plain the variability in each parameter, we returned to the 
original data set. For each individual soil sample the mea- 
sured or calculated values of the four hydraulic parameters 
were normalized by subtracting the mean and dividing by the 
standard deviation of each class using the reported textural 
class and the univariate or multivariate regression equations. 
The resulting normalized parameter values should be indepen- 
dent of textural class if the univariate dependences shown in 
Figures 4 and 5 or the multivariate dependences of Table 4 are 
removed from the data. Another one-way analysis of variance 
was performed on the normalized parameters. The results are 
shown in Figure 6 which is a plot of the ANOVA F ratios for 
each parameter before (a) and after normalization using (b) the 
univariate regression equations and (c) the multivariate regres- 
sion equations. All F ratios are significant at a level of 
p- 0.10. In all cases, the normalized parameters are more 
uniformly distributed over the textural classes (smaller F 
ratios indicate less dependence of the parameter on textural 
class). Additionally, the figure indicates that for all parameters, 
with the possible exception of log Ks, using the univariate 
regression relationships to describe parameter variation over 
texture is just as good as using the multivariate relationships. 

While the regression equations apparently account for 
much of the variability of the hydraulic parameters over differ- 
ent soils, the F ratios of the normalized parameters are still 
significant (albeit much reduced). We can speculate that the 
remaining variability of the parameters could be reduced if the 
exact particle size distribution for each sample were known 
rather than the approximate values based on the midpoint of 
the given textural class. However, our original intention was 
to develop a predictive relationship based on qualitative soil 
descriptors. There are several alternate explanations of the 
remaining variability. In particular, it may be that soil proper- 
ties not only affect each parameter individually but also affect 
the covariation of the parameters in a manner not completely 

TABLE 5. Results of the Univariate Regressions of the Hydraulic 
Parameters on Percent Sand, Silt, or Clay 

Significant 
Parameter Variable Slope Intercept r e at p - 0.10 

Mean b % clay 0.159 2.91 0.966 yes 
Mean log W s % sand -0.0131 1.88 0.809 yes 
Mean log Ks % sand 0.0153 -0.884 0.839 yes 
Mean Os % sand -0.126 48.9 0.771 yes 
S.D. b % clay 0.0500 1.34 0.524 yes 
S.D. log W s ß ........... no 
S.D. log K s % silt 0.00321 0.459 0.369 yes 
S.D. {D s % clay -0.0730 7.73 0.567 yes 
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Fig. 6. F ratios from the one-way analysis of variance for each 
parameter, before (a) and after normalization of the parameter values 
using (b) the univariate expressions of Table 5 and (c) the multivariate 
expressions of Table 4. All F ratios are significant (p = 0.10). 

described by the individual regression relationships. To exam- 
ine this possibility, we "inverted" the problem. That is, rather 
than attempting to find some numerical property of texture 
that can predict the parameter values, we attempted to find 
some property of the parameter values that can predict the 
textural class of the sample. This property, for instance, a sum 
or product of the four parameter values, would depend on 
percent sand, silt, and clay just as textural class depends on 
those variables. Proceeding from the simplest case, we decided 
to examine a weighted linear sum of the hydraulic parameters. 
The weight for each parameter can be chosen to maximize the 
variability of the sum over the textural classes using a classical 
discriminant analysis procedure. 

Discriminant Analyses 
The soil textural triangle was divided into the four regions 

indicated in Figure lb. The textural classes within each region 
were lumped into four broad categories, sand, silt, clay, and 
loam, for the first discriminant analyses; the lower right corner 
of the triangle is ignored since there were no samples labeled 
with the textural class "silt." Three initial discriminant analy- 
ses were performed: sand versus all others, silt versus all 
others, and clay versus all others. The analyses each contained 
two discriminant categories, and therefore only one discrimi- 
nant function was derived in each analysis. Analysis A in 
Table 6 gives the correlation between the discriminant scores 
and the parameter values for all samples in the data set (the 
remainder of Table 6 is discussed below). These correlations 
maybe thought of as the importance of each parameter in the 
particular weighted linear combination of the parameters that 
best differentiates between a given particle size class and all 
others. 

The discriminant analysis was next performed on all four 

broad discriminant categories simultaneously. This design al- 
lowed for the calculation of three discriminant functions; how- 
ever, only two were significant at the p = 0.10 level (signifi- 
cance determined by Wilks' lambda). The two sets of discrimi- 
nant score/parameter value correlations from the four cat- 
egory analysis are presented in analysis B in Table 6. The two 
functions accounted for 99.8% of the explainable variance in 
the data. 

A final detailed discriminant analysis was performed using 
all 11 textural classes as the discriminant categories. Since 
there were four discriminant variables, four functions were 
derived. All four functions were significant at the p = 0.10 
level (Wilks lambda); however, the first two functions accoun- 
ted for 97.2% of the explained variance. Therefore only the 
first two functions are considered. The discriminant score/ 
parameter value correlations are presented in analysis C in 
Table 6. 

For the two category analyses (analysis A), the highest cor- 
relations for b and log Ks occur on function DCL, which 
discriminates clays from all the rest. This can be interpreted as 
meaning that soils rich in clay can best be discriminated from 
soils poor in clay by the slope of the moisture characteristic 
and the saturated hydraulic conductivity of a soil sample. The 
relationship of b and clay content was already known from the 
univariate regression analysis. The saturated matric potential 
W s and porosity Os of the soil are important in differentiating 
soils rich in sands and silts from other soils but are relatively 
unimportant in discriminating clay-rich soils. The important 
fact is that all hydraulic parameters have significant weights 
on all functions (except possibly for log tP s and O s on DCL), 
and therefore we must conclude that the hydraulic uniqueness 
of the three basic soil types, sands, silts, and clays, arises from 
combinations of the hydraulic parameters and that they 
cannot be characterized by any single hydraulic parameter. 

Returning now to the relationship of the hydraulic parame- 
ters to textural class, we can attempt to relate the broad (four 
category) and detailed (11 category) discriminant results to the 
distinguishing characteristics of the three basic soil particle 
size classes. Notice that the two important functions for both 
the four and 11 category analyses are very similar. The pattern 
of parameter variation over the textural classes is robust and 
appears at both coarse and fine scales. To interpret the dis- 
criminant functions from the four and 11 group cases, we 
calculated the correlations between the discriminant scores 

based on textural groupings (D4A, D4B, D11A, and D1 lB) 
and the discriminant scores from the analyses based on parti- 
cle sizes (DCL, DSN and DSL). The results are presented in 
Table 7. For both the four and 11 group analyses, the second 
discriminant functions (D4B and DllB) are highly correlated 
with the function which best discriminates silts from sands and 

TABLE 6. Correlation Coefficients (r) Between Canonical Discriminant Function Scores and the 
Hydraulic Parameter Values 

Hydraulic Parameters 
Analysis Discriminant Discriminant 

Analysis Design Categories Function b log W, log K, O• 

A 2 categories clay vs. all others DCL -0.92 0.01 0.44 -0.08 
sand vs. all others DSN 0.31 0.51 -0.36 0.43 
silt vs. all others DSL 0.19 -0.76 0.14 -0.48 

B 4 categories sand, silt, clay, loam D4A 0.41 0.45 •-0.37 0.37 
D4B 0.85 -0.57 -0.22 -0.30 

C 11 categories the 11 textural classes DllA 0.51 0.33 -0.38 0.30 
DllB 0.79 -0.55 -0.03 -0.43 
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TABLE 7. Correlation Coefficients (r) Between Discriminant 
Function Scores 

Two-Category 
Discriminant 

Function 

Four-Category Eleven-Category 
Discriminant Discriminant 

Function Function 

D4A D4B DllA DllB 

DCL -0.79 -0.61 -0.80 -0.59 
DSN 0.96 -0.27 0.96 -0.29 
DSL 0.10 -0.99 0.08 -0.99 

clays (the coefficients are -0.99 for both correlations). This 
suggests that we might interpret the second discriminant func- 
tion as a silt axis. The first function for each group might 
likewise be interpreted as a clay-sand axis. The two discrimi- 
nant functions can be used to define a planar parameter space 
similar to the sand, silt, clay planar space defined by the 
USDA triangle. Figure 7 shows a plot of the two discriminant 
function scores for the four group case. The functions were 
evaluated for each group using the mean of the parameter 
values within each group. Superimposed on the discriminant 
space is the modified USDA triangle from Figure lb. The 
similarity between the classification scheme based on weighted 
combinations of the hydraulic parameters and the classifi- 
cation scheme based on particle size distributions of the soils 
is striking. 

A similar plot of the discriminant scores based on the 11 
group analysis is presented in Figure 8. A distorted version of 
the textural triangle (Figure la) is superimposed on the dis- 
criminant space. Again, the similarity between the two spaces 
is striking. While the relative areas of the textural classes have 
changed, the neighbor-to-neighbor relationship is identical in 
the two spaces. The only textural class which falls outside its 
expected region is the sandy clay class. It should be noted, 
however, that this class was represented by only 16 samples in 
the total sample population of 1448. 

First 
Discriminont 
Function 

Second 
Discrlminonf 
Function 

Fig. 7. Plot of the two significant discriminant function scores for 
the four group analysis. The modified USDA textural triangle is 
superimposed on the discriminant space. 

cloy 

1.0 

-4.0 4.0 

1.0 

Second 
Discriminont 
Function 

Fig. 8. 

First 
Dlscriminont 
Function 

Plot of the two most important discriminant function 
scores for the eleven group analysis. A distorted USDA textural trian- 
gle is superimposed on the discriminant space. 

DISCUSSION 

As in the previous studies of this data set we found that of 
all the physical soil descriptors available, variability in texture 
was most closely related to variability in the soil moisture 
parameters. In previous work this result led to a simple tabu- 
lation of the statistical properties of the parameters in each 
textural class, a useful step in understanding the variability of 
the parameters. We have been able to extend these results in 
two ways. The discriminant analyses suggest an intuitive 
qualitative explanation for the observed relationship between 
parameter distribution and soil textural characteristics. The 
regression analyses provide a quantitative means of predicting 
the expected statistical properties of the parameters for a given 
soil texture. 

Soil textural classes are determined uniquely by a combi- 
nation of three variables, the percent sand, silt, and clay con- 
tent of the soil. In this system, there are in reality only two 
independent variables, and these variables define a planar 
space such that each textural class occupies a unique region of 
the space. The discriminant analyses on the hydraulic parame- 
ters resulted in two important functions, each of which pro- 
duces a single variable that is a linear combination of the 
hydraulic parameters. These two functions are orthogonal and 
can also be taken to define a planar space which may be 
divided into unique regions. The striking result of this analysis 
was that the two spaces showed a definite one-to-one map- 
ping. That is, for a "typical" soil of a given textural class, the 
sand-silt-clay space is isomorphic with the hydraulic parame- 
ter space. It is intuitively reasonable that the hydraulic charac- 
teristics of a soil are determined by the particle size distri- 
bution of the soil. It would also seem reasonable that any set 
of hydraulic parameters that can define a planar space which 
provides the same discrimination between soil samples as a 
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planar space based on the particle size distribution would be 
the minimum set of hydraulic parameters necessary to 
characterize the hydraulic behavior of the soil (at least to the 
same degree of resolution as that provided by the particle 
sizes). Thus we can infer that the parameters studied in this 
paper provide a nearly complete description of the hydraulic 
characteristics of soils given the information available. 

Of more practical importance are the results of the regres- 
sion analyses. The fact that the variances as well as the means 
of the hydraulic parameters are functions of soil textural class 
has not been reported before. That there is more inherent 
variability in the parameters in certain classes is perhaps not 
surprising. That the variability can be explained so simply as a 
univariate function of the sand, silt, or clay content is sur- 
prising. The large reductions in F ratios from the analysis of 
variance (see Figure 6) suggest that the regression equations 
are very robust since they can remove so much of the pattern 
in the parameter distributions. It must be emphasized that the 
patterns extracted in this analysis, while significant, are still 
embedded in a large amount of noise. The parameter vari- 
ances for each textural class are not small relative to the 
means (see Table 3), and the patterns we observed may have 
been detectable only because of the large data set available for 
analysis. For any particular soil sample or small group of 
samples, the relationships described above may be obscured. 

Attempts to model the observed spatial variability of soil 
moisture are commonly based on an assumed variance in the 
moisture parameters for a given soil type. Reliable estimates of 
the size of the variance to be used (or for that matter of the 
parameter means) have been lacking. Furthermore, the 
manner in which these means and variances might change in 
heterogeneous systems of mixed soil types has not been inves- 
tigated either. The results presented here, having been derived 
from a large, diverse set of soil samples, should be indicative of 
the true pattern of variability in the hydraulic parameters. The 
use of these parameter class means and standard deviations 
for a known soil textural type may improve the predictions 
from stochastic models utilizing a homogeneous soil. The use 
of the regression equations for the parameter means and stan- 
dard deviations should add increased sophistication to models 
which incorporate distinct layers of different soil textures. Be- 
cause the regressions are continuous in the variables, it may 
be possible to construct models that are based on continuous 
spatial variation in physical soil properties (such as sand or 
clay content) which provide even better simulations of soil 
moisture. For all cases, knowing the patterns of parameter 
variability will greatly reduce the dimensionality of the mod- 
eling problem and increase the realism of the results. 
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