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[1] Integration of NDVI data into ecological and biogeochemical modeling has placed
more stringent requirements on the accuracy and stability of the measurement.
We compare two recent AVHRR NDVI data sets included as part of ISLSCP Initiative II:
(1) the Fourier-Adjusted, Sensor and Solar zenith angle corrected, Interpolated,
Reconstructed (FASIR) monthly time series and (2) the Global Inventory Modeling and
Mapping Studies (GIMMS) monthly time series. Although both started with nearly
identical composited AVHRR GAC data sets, each data set has been processed differently
to reduce sensor, atmospheric, and illumination effects that vary over time. We find that
the resulting absolute NDVI data records differ substantially and consistently for large
parts of the globe. These differences also propagate into the NDVI anomaly record (e.g.,
deviations from monthly or annual means) particularly in the 1984–1985, 1994 periods.
To assess the effect of these differences on predictions of land surface CO2 fluxes, the
fraction of absorbed photosynthetically active radiation (fPAR) was calculated from each
record, and used to drive a biogeochemical model (CASA). On a global basis, calculated
net ecosystem exchange shows large variability inherited from the NDVI records.
However, these variations do not match global CO2 fluxes derived from atmospheric
inversion of CO2 concentration measurements. We conclude that other processes (burning,
physiologic response to stress) are likely responsible for major anomalies in the observed
global land net carbon fluxes to the atmosphere during the period 1982–1998.

Citation: Hall, F., J. G. Masek, and G. J. Collatz (2006), Evaluation of ISLSCP Initiative II FASIR and GIMMS NDVI products and

implications for carbon cycle science, J. Geophys. Res., 111, D22S08, doi:10.1029/2006JD007438.

1. Introduction

[2] A primary accomplishment of land remote sensing
over the last thirty years has been the development of global
vegetation indices for monitoring the terrestrial environ-
ment. The contrast between near-infrared and visible reflec-
tance for characterizing vegetation ‘‘greenness’’ was
originally recognized using field radiometers [Birth and
McVey, 1968] and early Landsat imagery [Rouse et al.,
1974]. Gradually, the Normalized Difference Vegetation
Index (NDVI) became the standard formulation, in large
part because of its insensitivity to variability in illumination
conditions [Tucker, 1979]. NDVI is formally defined as
(rnir � rvis)/(rnir + rvis) where rnir is either the surface or
top of atmosphere reflectance in the near-infrared wave-
length range and rvis is for the visible wavelength range. For
narrowband sensors, reflectance in the red wavelength is
usually substituted for rvis.
[3] Increased concern with global climate and environ-

mental changes in the 1980s, coupled with the cost of

Landsat data as a result of privatization of the Landsat
program, spurred researchers to use data from the NOAA
Advanced Very High Resolution Radiometer (AVHRR)
instruments. Although these instruments were designed for
operational meteorology, their capacity to acquire daily,
global data in visible and near-infrared wavelengths made
them useful for tracking vegetation conditions. NOAA
began producing the first vegetation index products from
AVHRR in 1982 (the Global Vegetation Index or GVI
product). Early analyses of the GVI products focused on
basic biogeography, seasonality of vegetation patterns at
continental scales, and correlations with atmospheric carbon
dioxide measurements [Justice et al., 1985; Goward et al.,
1985; Tucker et al., 1985, 1986]. Although critical for
establishing the utility of global satellite observations for
monitoring vegetation, these early studies primarily focused
on qualitative relations between the NDVI and vegetation
properties. Gradually, researchers developed quantitative
relations between NDVI and biophysical variables control-
ling vegetation productivity and land/atmosphere fluxes
[Asrar et al., 1984; Sellers, 1985; Nemani and Running,
1989]. Principal among these are leaf area index (LAI) and
the fraction of absorbed photosynthetically active radiation
(fPAR). Hall et al. [1992] found that NDVI responded
almost linearly to the fraction of incident photosynthetically
active radiation absorbed by the photosynthetically active
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tissue in the canopy (fPAR) and was insensitive to that
absorbed by nonphotosynthetic tissue.
[4] These pioneering studies led to a current generation of

ecosystem models that use satellite-based vegetation indices
for predicting carbon, energy, and water fluxes in response
to climate variability and ecosystem disturbance [e.g.,
Randerson et al., 1996; Sellers et al., 1996; Kaminski et
al., 2002; van der Werf et al., 2004]. Ideally, these models
should provide understanding of how trends in climate since
the early 1980s have affected vegetation patterns, and how
these feed back to the climate system [e.g., Nemani et al.,
2001; Bounoua et al., 2000]. Several carbon and climate
studies have shown that prescribing seasonal phenology of
vegetation using NDVI based products produces more
realistic model simulations than a phenology based on
climatology [Kang et al., 2006]. NDVI products are also
used to validate phenology and interannual variability in
vegetation grown in so-called dynamic vegetation models
[Dickinson et al., 1998; Zeng et al., 1999; Lucht et al.,
2002].
[5] The integration of NDVI observations into physical

models placed more stringent requirements on the accuracy
and stability of the measurement. From the perspective of
long-term ecosystem monitoring, the AVHRR observation
record suffers from numerous deficiencies including poor
sensor calibration, poor intercalibration between successive
NOAA platforms, wide variations in solar-view geometry,
atmospheric contamination, cloud contamination, and the
systematic drift in acquisition time during the life of
individual missions [Gutman, 1991; Goward et al., 1993;
Los et al., 1994; Privette et al., 1995; Gutman, 1999]. As a
result, the AVHRR Global Area Coverage (GAC) record has
been reprocessed several times since the mid-1990s in an
effort to mitigate these deficiencies [Townshend, 1994;
Tucker et al., 1994; James and Kalluri, 1994; Goward et
al., 1994; Los et al., 2000; Tucker et al., 2005].
[6] Because NDVI is a ratio of differences between two

adjacent bands, it is largely insensitive to variations in
illumination intensity. However, NDVI is sensitive to sen-
sor, atmospheric and illumination effects that differ between
bands. Band calibrations, for example, have changed fre-
quently between the five NOAA AVHRR instruments that
acquired the 22-year NDVI record for Initiative II. In
addition, natural variability in atmospheric aerosols and
column water vapor have created surface-independent var-
iations in the NDVI record. Finally, over the period of
record there were two major volcanic eruptions, El Chichon
in 1982 and Mt. Pinatubo in 1991 [Rosen et al., 1994] that
injected large quantities of aerosols into the Earth’s strato-
sphere. These aerosols, along with smoke from biomass
burning and dust from soil erosion and other factors,
introduce significant variability in the AVHRR NDVI
record. These constituents have significantly different
effects on AVHRR channel 1 (visible) and channel 2 (near
infrared). Variations in the illumination conditions over the
period of record also introduce spurious variation into the
NDVI signal. The AVHRR sensors flew aboard the after-
noon NOAA platforms, beginning with the NOAA 7
satellite launched in January of 1980, continuing on NOAA
9, 11 and 14. The NOAA satellite overpass times drifted
from the nominal 1:30 pm overpass time by as much as

4 1/2 hours toward evening, creating variable illumination
and view angles (see Figure 1).
[7] The ISLSCP Initiative II data collection contains two

AVHRR NDVI time series, processed using two different
algorithms, both aimed at reducing the above mentioned
effects on the NDVI signal. These are (1) The Fourier-
Adjusted, Sensor and Solar zenith angle corrected, Interpo-
lated, Reconstructed (FASIR) monthly time series 1981–
1998 [Los et al., 2005; Hall et al., 2006] and (2) The Global
Inventory Modeling and Mapping Studies (GIMMS)
monthly time series, 1981 to 2000 [Tucker et al., 2005].
The inclusion of these data sets provides the land science
community with a consistently gridded, set of vegetation
records for driving process models. Although both data sets
start with the NOAA AVHRR 4 km resolution GAC data,
each has chosen unique processing approaches for produc-
ing a consistent NDVI record. Both the GIMMS and FASIR
records were originally produced at 8 km resolution, but are
represented within the International Satellite Land Surface
Climatology Project (ISLSCP) Initiative II collection
using the standard 0.25, 0.50, and 1.0 degree resolution
latitude-longitude grids. The ISLSCP Initiative II minimum
0.25 degree equal-angle grid, a fourfold increase in spatial
resolution over the Initiative I collection, was chosen to
correspond to data input requirements for carbon, water and
energy models.
[8] This paper presents a comparison between the

ISLSCP FASIR and GIMMS NDVI data sets, with a
specific focus on the applicability of the ISCLSCP data
sets to carbon cycle modeling. We first explore differences
between the data sets in terms of absolute NDVI, including
comparisons with Landsat-derived NDVI from single clear-
sky observations. We then examine differences in terms of
interannual anomalies. Finally, we address the implications
of observed NDVI variability for global carbon cycle
modeling.

2. Description of ISLSCP NDVI Data Sets

[9] Key aspects of the FASIR and GIMMS algorithms
and their differences are highlighted below in Table 1. The
AVHRR raw data used for GIMMS and FASIR are some-
what different. Both used maximum NDVI composited data
to reduce atmospheric and cloud contamination. However,
FASIR used the cloud-screened Pathfinder AVHRR bands 1
and 2 series of James and Kalluri [1994], whereas GIMMS
began with the NOAA/NCAR top of atmosphere (TOA)
15-day data series. GIMMS used NOAA 9 data to fill a
4-month NOAA 11 gap (09/94 to 01/95) while FASIR
extrapolated the NDVI record to fill the gap. The processing
approaches differ considerably. To produce surface reflec-
tance data corrected for orbital drift over the years, FASIR
applied calibration, Bidirectional reflectance function (BRF)
and atmospheric corrections (no water vapor) individually
to bands 1 and 2 of the cloud-screened Pathfinder AVHRR
series of James and Kalluri [1994]. To further reduce snow
and cloud contamination, Fourier filtering was applied to
the NDVI time series and in the tropics spatial aggregation
to further mitigate cloud contamination. The GIMMS pro-
cessing approach did not utilize atmospheric correction,
except during the El Chichon and Mt. Pinatubo volcanic
stratospheric aerosol periods, and applied corrections to
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NDVI directly (i.e., does not attempt to correct individual
bands). GIMMS used the NOAA thermal band for cloud
screening, did not use Fourier filtering to reduce snow and
cloud effects and did not use spatial aggregation in the
tropics. Hence tropical cloud contamination may be more
problematic. GIMMS adjusted the NDVI record for the
effects of varying solar illumination angle utilizing the
empirical mode decomposition technique [Huang et al.,
1998, 1999]. These differences between the GIMMS and
FASIR products are discussed more fully in the following
sections.

2.1. Data Input

[10] Both FASIR and GIMMS used data composites from
the full AVHRR data record but the compositing periods
used are somewhat different. Frequent cloud cover elimi-
nates roughly 2/3 of the daily AVHRR record. In order to
construct periodic cloud-free views of the Earth, composite
monthly images were constructed by selecting for each
pixel the maximum NDVI during 10-day (FASIR) or
15-day (GIMMS) intervals. Choosing each pixel’s maxi-
mum NDVI during an interval of a few days reduces
aerosol, cloud cover and water vapor effects since NDVI

Figure 1. Variation of latitude-averaged solar zenith angle (blue) and trends (green) from NOAA 7
through NOAA 14 for (top) 35 to 75 north latitude; (middle) 35 north to 35 south latitude; and (bottom)
35 to 55 south latitude.
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is maximum on the clearest days. It should be noted
however, that maximum NDVI compositing does not com-
pletely remove these atmospheric effects. Compositing can
be done over any time interval, but 9 days is generally
selected as the minimum period since the NOAA orbit
repeats at that frequency. The primary FASIR data record
was constructed from 10-day composites. Since ISLSCP
contains monthly data, a monthly FASIR data record was
generated for the Initiative II collection based on the
composite value for days 11–20 because this middle period
best represented the entire month. The GIMMS monthly
data record is based the average maximum NDVI for each
of the 15-day periods in a month.
[11] FASIR NDVI data sets were compiled using band 1,

band 2, solar zenith angle, scan angle, and relative azimuth
angle values from the Pathfinder AVHRR Land (PAL) data
set [James and Kalluri, 1994] for the period of 1982–1998.
Pathfinder radiances were determined to be more appropri-
ate for FASIR BRF adjustments than top of the atmosphere
measurements from the AVHRR sensors because the Path-
finder data set contained band 1 and band 2 radiances
corrected for intersensor calibration differences, atmospheric
molecular scattering and ozone absorption (from TOMS).
Corrections accounted for atmospheric path length changes
induced by topographic variations. Pathfinder also cloud
screened the AVHRR data using the CLAVR algorithm.
[12] The input data for the GIMMS 1981–2002 time

series were the top of the atmosphere NOAA AVHRR GAC
1B data, obtained from NOAA and from National Center
for Atmospheric Research (NCAR). GIMMS augmented
this data set with GAC 1B data available from NOAA’s
Satellite Active Archive. Cloud screening was provided by
a channel 5 thermal mask of 0�C for all continents except
Africa, where a cloud mask of 10�C was used. In addition
bimonthly compositing significantly reduced cloud contam-
ination.
[13] The AVHRR acquisitions used for the 1981 to 1998

time period for FASIR and GIMMS are similar, with an
important exception. GIMMS utilized NOAA 9 data in the
October 1994 to January 1995 period to fill a gap in the
Pathfinder record during this period (NOAA 11 started to
malfunction and its replacement, NOAA 13, failed shortly
after launch; NOAA 14 was not yet launched). During this
period, FASIR estimated AVHRR using a climatological
mean and the Fourier Adjustment. Specifically, two low-
pass filters (±220 day and ±50 day moving windows,
respectively) were used to interpolate the missing data for
late 1994.

2.2. Data Processing

2.2.1. Calibration
[14] Both GIMMS and FASIR products recalibrated

AVHRR band 1 and 2 reflectance measurements to reduce
intersensor and intrasensor errors. FASIR started with the
calibration procedure of Rao and Chen [1994]. This was
improved by using a thousand reflectance-invariant sites
globally (e.g., deserts) to examine residual variations in
Pathfinder band 1, band 2 and NDVI. On the basis of these
observations adjustments were made to the Rao and Chen
[1994] sensor gains to render the band 1 and 2 reflectance
more stable over these targets. Following this, the relative
RMS error as a result of sensor degradation and intercali-
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bration differences in the channel 1 and 2 gains were
estimated to be about 1%.
[15] GIMMS used the technique of Vermote and Kaufman

[1995] to adjust the calibration of NOAA-7 through NOAA-
14 AVHRR channel 1 and 2 data. This approach uses a
different calibration standard from Rao and Chen [1994]
and results in slightly higher NDVI values (S. Los, personal
communication, 2005). Like FASIR, the calibration was
refined using invariant desert sites. The GIMMS data set
extends beyond 1998 to include data from NOAA-16. In
order to tie together the NOAA-14 and NOAA-16 time
series, GIMMS also adjusted the historical (NOAA-14 and
earlier) and NOAA-16 NDVI by a constant offset to match
up with a coincident and spatially aggregated 8-km SPOT
Vegetation NDVI time series. This was necessary because
the bilinear gain for channel 1 and channel 2 of NOAA-16’s
AVHRR instrument complicates ex post facto calibration. It
should be noted that calibrating the AVHRR NDVI values
to SPOT effectively narrows the instrument band pass, and
results in overall higher NDVI values.
2.2.2. NDVI Variations Resulting From Variations in
Solar and View Zenith Angle
[16] The FASIR algorithm adjusted for illumination and

viewing angle effects in the AVHRR NDVI by estimating
the BRF for each pixel from its 17-year variation. This is
accomplished by employing the Li Sparse and Ross Thick
kernel approach used to estimate MODIS BRF [Wanner et
al., 1995]. To obtain sufficient numbers of observations, the
BRF for each pixel was assumed constant over the 17-year
period so that all monthly NDVI values over the 17 years
could be used to estimate the kernels. Using the estimated
kernel weights, NDVI was normalized to standard viewing
geometry (30 degrees solar zenith angle and 0 degrees view
angle). In contrast, GIMMS utilized the empirical mode
decomposition (EMD) [Huang et al., 1998, 1999], an
empirical approach to correct for view and illumination
angle effects. EMD extracts NDVI trends that are more than
80% correlated to the solar zenith angle. Areas with trends
that have a lower correlation were not corrected.
2.2.3. Atmospheric Correction
[17] GIMMS applied no atmospheric correction, except

during the El Chichon and Mt. Pinatubo volcanic strato-
spheric aerosol periods. A stratospheric aerosol correction
was applied as proposed by Vermote et al. [1997] from April
1982 through December 1984 and from June 1991 through
December 1994. GIMMS formed composite stratospheric
aerosol optical depth fields by combining the work of Sato
et al. [1993], and Vermote et al. [1997]. The work of Rosen
et al. [1994], Russell et al. [1993] and Dutton [1994] were
used to compare specific optical depth measurements to
GIMMS blended global fields. GIMMS optical depth field
varied by month and degree of latitude. The Pathfinder data
set on which FASIR is based is corrected for atmospheric
molecular scattering and ozone absorption, but not water
vapor. FASIR also corrected for aerosols injected into the
stratosphere by Mt. Pinatubo and El Chichon, but used the
aerosol optical depth data from Sato et al. [1993]. The Sato
et al. [1993] data extends further north and south (90 S to
90 N) than the data set by Vermote (50 S to 50 N).
Comparison of the NDVI corrected with the Sato and the
Vermote optical depth data showed close agreement be-
tween 50 degrees South and 50 degrees North. Stratospheric

optical depths prior to and 2 years after the eruptions were
set to zero for both data sets.

3. Geographic Characteristics

[18] As part of the ISLSCP processing, NDVI data sets
were produced at 0.25, 0.50, and 1.0 degree resolution.
Original input data for both data sets was the �4 km
resolution NOAA GAC data. The GIMMS NDVI data set
was derived directly from this record. The FASIR NDVI
data set was derived from the AVHRR Land Pathfinder
(PAL) data set, which was resampled to 8 km resolution.
[19] Since NDVI is a nonlinear transformation of the

original reflectance data, averaging NDVI from several
independent observations across a region will give a differ-
ent result compared to averaging the original spectral data
and then calculating a single, aggregate NDVI value [Hall
et al., 1992]. The original NOAA GAC data represent a
subsample of the original 1.1 km LAC sensor stream; at
nadir only 27% of each 4 km GAC pixel was actually
imaged by the instrument [Townshend, 1994]. Within the
GIMMS processing, these �4 km NDVI subsamples were
mapped to output 8 km grid cells, and the single observation
with the maximum NDVI value during the 15-day compos-
iting period was retained. Thus each 64 km2 15-day
GIMMS NDVI value actually corresponds to an irregularly
shaped 4.4 km2 observation from the compositing period;
up to 93% of the 8 km cell was not observed by the
instrument. For ISLSCP Initiative II, all 8 km GIMMS
NDVI values were averaged within a single 0.25 degree
grid cell. The FASIR geographic processing approach was
similar, except that the compositing period is the middle
10 days of each month, then the 8 km FASIR NDVI values
are averaged to form the 0.25 degree output. The differences
in compositing procedure imply that each monthly GIMMS
0.25 degree cell at the equator includes information from
roughly twice as many AVHRR 1.1 km LAC observations
compared to, since two values for each month are incorpo-
rated into the GIMMS product, but only one value for the
FASIR.
[20] The nature of the FASIR data processing introduced

two types of smoothing that are visible in the NDVI data.
First, to reduce tropical cloud contamination, FASIR
retained the maximum NDVI value from a moving 3 �
3 pixel window for tropical regions. As a result, the nominal
resolution of the FASIR data in the tropics is �24 � 24 km,
about the same as the 0.25 degree resolution of the finest
ISLSCP grid. Second, the time series from each pixel was
fitted with a Fourier representation to identify and remove
outliers and create a temporally smooth curve. The removal
of outliers also give the FASIR NDVI imagery a smoother,
less noisy appearance compared to GIMMS data.
[21] Overlaying the Initiative II GIMMS and FASIR data

sets at 0.25 degree resolution indicates a systematic mis-
registration of about 1/2 pixel (�13 km at the equator), with
the FASIR data offset to the southwest compared to the
GIMMS. To evaluate which data set is correctly registered,
orthorectified (<60 m 1s geodetic accuracy) Landsat TM
imagery from the Nile river was compared with the two
NDVI data sets within ArcGIS. The Nile river offers a
useful registration target given the sharp boundary between
the vegetated valley and delta, and the unvegetated desert
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surroundings. Comparing the boundaries of the vegetated
zone mapped from the Landsat suggests that the GIMMS
data set is correctly registered, while the FASIR data is
misregistered (to the southwest).

4. Comparisons of GIMMS, FASIR NDVI
Absolute Values

[22] As noted above, the processing approaches of
the FASIR and GIMMS NDVI data sets are quite different
in philosophy and approach. In comparing absolute
NDVI values between the products it is useful to consider
how these processing choices have affected the NDVI
measurement.

4.1. Calibration and Scaling

[23] Although both FASIR and GIMMS used desert
calibration targets, they used slightly different calibration
methodologies. The GIMMS calibration approach results in
a small offset (bias) of NDVI by �0.05 (S. Los, personal

communication, 2005). In addition, the GIMMS applies a
scaling factor to match the NDVI derived from the SPOT
Vegetation sensor data during the 1997–2003 period of
observational overlap. The much narrower band pass of
SPOT Vegetation compared to AVHRR was designed to
avoid atmospheric water vapor absorption in the NIR band,
hence SPOT NDVI will be larger than that calculated from
AVHRR; hence scaling the GIMMS with the SPOT product
increases the GIMMS NDVI amplitude.

4.2. Atmospheric Correction

[24] GIMMS and FASIR NDVI represent fundamentally
different measurements of the land surface. Although NDVI
is commonly defined in terms of surface or top of atmo-
sphere reflectance, neither the GIMMS nor FASIR records
implemented a full atmospheric correction. GIMMS was
corrected only for stratospheric aerosols. FASIR NDVI
included ozone and Rayleigh corrections, but not tropo-
spheric aerosols or water vapor. In general, the Rayleigh
scattering correction implemented by FASIR should result
in lower reflectance in the AVHRR visible band for dark
vegetated targets, and hence higher NDVI values compared
to the TOA GIMMS product.

4.3. Surface BRDF Correction

[25] The FASIR data have been BRF corrected to nadir
look angle, and 60 degree solar elevation [Los et al., 2005]
whereas GIMMS NDVI values were measured at a range of
view angles selected by compositing. The BRF adjustment
may increase NDVI calculated from TOA or surface reflec-
tance, particularly in conditions of high aerosol optical
thickness [Los et al., 2005]. The effects of the BRF
correction are more pronounced in forests (owing to mul-
tiple scattering of near-infrared radiation in the canopy), and
at high latitudes in the winter when the observed solar
elevation is low.

Figure 2. Absolute difference in average monthly NDVI
between GIMMS and FASIR data sets for January, April,
July, and October. The length of record in each case was
1983–1998.

Figure 3. Distribution of NDVI values for tropical
evergreen forest for all months in the 1982–1998 period,
derived from ISLSCP II 0.25 degree EDC Landcover
classification and the 0.25 degree FASIR and GIMMS data
sets.
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4.4. Filtering and Interpolation

[26] As noted above, the FASIR used filtering and inter-
polation methods not employed in GIMMS. FASIR
replaced NDVI values in the tropics with the maximum of
a 3 � 3 pixel moving window to actively suppress cloud
contamination, thus tending to raise NDVI values. In the
Boreal forests (northern conifers) FASIR replaced low
winter NDVI values with the median October value to
avoid snow contamination, thus producing a higher winter
NDVI in this biome. Finally, the FASIR Fourier filtering
will tend to remove individual outliers, whether very high or
very low.
[27] Given these processing differences, it is not surpris-

ing that absolute NDVI values of the two data sets show
strong and consistent mismatches. The differences between
the FASIR and GIMMS monthly average NDVI are shown
in Figure 2. Slightly over half of the globe’s land area shows
good agreement (<0.05 absolute NDVI difference) between
the two data sets. These areas tend to be those with limited
NDVI values (e.g., hyperarid regions in North Africa and
Arabia) or range (Western Amazon and Central Africa). In
general, FASIR NDVI is considerably higher in the cloudy
tropics (e.g., West Africa, Guyana, Myanamar, NewGuinea),
reflecting the effect of the FASIR 3 � 3 maximum NDVI
filter. This filter was implemented to reduce cloud contam-

ination but will also result in higher NDVI in clear areas. As a
result, NDVI values in these areas range from 0.5–0.7 in the
FASIR data set, but just 0.3–0.5 in the GIMMS data set
(Figures 3 and 4b). On the basis of comparisons with Landsat
TOA and surface reflectance imagery, NDVI values for
tropical forests should be considerably higher than those
represented in the GIMMS record, despite the lack of
atmospheric correction in GIMMS. Though the maximum
NDVI values for evergreen tropical forest type for all months
of the data record are similar between the two data sets,
FASIR has more observations at high NDVI values while
GIMMS shows a broader distribution of NDVI values
(Figure 3).
[28] Except for the midsummer, northern temperate and

boreal forests tend to exhibit considerably higher NDVI in
FASIR than GIMMS (Figures 2 and 4a). This can be
explained through three contributing factors. First, the
Rayleigh and ozone corrections applied to the FASIR data
tend to increase NDVI, by reducing path radiance in the
AVHRR visible band. Second, the FASIR BRF correction
tends to increase NDVI in Winter, Fall, and Spring. Finally,
the filtering applied to the FASIR record replicates the
October NDVI value in boreal regions during the winter
to eliminate snow contamination, resulting in higher values
compared to GIMMS. During the midsummer the situation

Figure 4. Time series of NDVI values from FASIR (thin black line) and GIMMS (thick grey line) for
(a) Sweden, (b) Gabon, and (c) Pennsylvania.
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reverses, with GIMMS NDVI data trending significantly
higher at latitudes north of �50 degrees N. At 60N, the
GIMMS NDVI values are up to 0.20 greater than FASIR.
Since FASIR is not corrected for water vapor effects in band
2, this probably reflects the postcalibration scaling of
GIMMS to the higher TOA values of SPOT Vegetation
NDVI (its IR band largely avoids the water vapor absorp-
tion line), which tends to amplify the NDVI difference over
the seasonal NDVI cycle.
[29] Southern hemisphere grasslands, shrublands, and

semiarid environments tend to show higher values in the
GIMMS data set than in FASIR, at all times of year. For
example, values in Western Australia and Queensland are
up to 0.20 higher in the GIMMS record, and values in the
Argentine Pampas are up to 0.16 higher. Results of Los et

al. [2005] suggest that BRF correction for grasslands (in
North America) tend to reduce FASIR NDVI values during
peak greenness, which could explain some of the offset.
However, it is not clear why this difference should persist
throughout the year.
[30] Despite these differences, in many parts of the world

the NDVI values in the two data sets do agree. For example
in North Africa (where both data sets were calibrated prior
to atmospheric correction) NDVI differences are typically
less than 0.03. In temperate regions of the Northern Hemi-
sphere (e.g., central and eastern United States, central
Europe, southern Russia, China) differences are usually less
than 0.05 (Figures 2 and 4c).
[31] To investigate differences between the data sets more

fully, we have processed several Landsat TM scenes from
the 1980s and 1990s to both surface and TOA reflectance
using the 6S radiative transfer model [Vermote et al., 1997;
Masek et al., 2006]. Because the Landsat data represent
instantaneous, cloud-free views, NDVI retrieved from
Landsat avoids errors associated with compositing and
cloud clearing. Landsat NDVI was calculated from red
and near-infrared (band 3 and 4) reflectance values, and
then averaged to the 0.25� resolution of the ISLSCP
Initiative II grid. The Landsat TM band passes are substan-
tially narrower compared to the AVHRR band pass, and one
could in principle adjust the Landsat measurements to
‘‘match’’ the AVHRR NDVI. Here we have not elected to
do so, in part because the GIMMS data is already normal-
ized to the narrow band pass of the SPOT Vegetation sensor.
[32] A transect across western Montana and Idaho

includes a range of vegetation conditions at midlatitudes,
including dense conifer forest, sparse woodlands, semiarid
shrublands, and agriculture. Two successive Landsat acquis-
itions from 10 September 1990 provide 79 quarter degree
observations for comparison with the ISLSCP data sets
(Figure 5). The GIMMS record shows a strong correlation
with the Landsat NDVI values. As expected, the GIMMS
data (derived from AVHRR TOA reflectances) most closely
matches the Landsat TOA NDVI, on the basis of the lower
average absolute difference between values (Figure 5). The
correlation with FASIR data over the same region is slightly
weaker, with greater dispersion of low NDVI values, but a
closer association with the Landsat surface reflectance
NDVI.
[33] A second, north-south transect was analyzed to

examine differences between FASIR and GIMMS in Boreal
midsummer conditions (Figure 6). This transect (July 1991)
includes data from 98.75–99.00 degrees west, and extends
from 80 degrees north (Northwest Territories, Canada) to
45 degrees north (South Dakota, United States). As noted
above, GIMMS and FASIR values appear consistent in
the midcontinent but diverge in Boreal regions, with
GIMMS having consistently higher values in midsummer.
A set of Landsat NDVI values from July 1991 are also
plotted (path 35, rows 17–18, acquired July 26, 1991). In
contrast to the Montana example, the GIMMS data in this
case show far higher values than that found for Landsat
TOA NDVI, and are even higher than Landsat surface
reflectance NDVI.
[34] It is clear from these analyses and comparisons

between the FASIR and GIMMS NDVI records, that neither
can be used in an absolute sense, since neither completely

Figure 5. Comparison of Landsat-derived NDVI values
(averaged over 0.25� ISLSCP Initiative II grid) with (top)
GIMMS and (bottom) FASIR values, for Montana/Idaho
region. Landsat data are from WRS-2 path 42, rows 27–28
acquired 10 September 1990. GIMMS and FASIR data are
from September 1990 maps. Landsat NDVI calculated from
both top-of-atmosphere reflectance (crosses) and atmospheri-
cally corrected surface reflectance (diamonds) are shown.
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corrects for spatial or seasonal atmospheric variations,
particularly tropospheric aerosols and water vapor, which
themselves can have a strong seasonal signal. Alternatives
to using the absolute values are discussed and evaluated
further in the next section.

5. Interannual Variability of NDVI Anomalies

5.1. Interannual NDVI Patterns

[35] Both FASIR and GIMMS NDVI data records exhibit
variability resulting from calibration, viewing geometry and
atmospheric conditions that alter the land surface reflec-
tance signal inferred from the satellite observations. Rec-
ognizing this some analyses of long-term trends in
vegetation greenness [Myneni et al., 1997; Zhou et al.,
2003] or drought response [Anyamba et al., 2001; Ji and
Peters, 2003] rely on the use of NDVI anomalies, i.e., the
deviation of NDVI measurements in a record from the
average monthly or annual NDVI computed from that
record. Ideally, interannual anomalies should match across
the FASIR and GIMMS records, even if absolute NDVI
values differ.
[36] In Figure 7 we show the NDVI anomalies for

continental regions of the globe. Not only are there differ-
ences in the absolute NDVI records shown in Figures 2
through 6, there are also significant differences in the two
anomaly records that are of similar magnitude to the annual
anomalies themselves. The anomalies in the FASIR record

and the difference between FASIR and GIMMS are espe-
cially large in the period 1984–1986 and in 1994 for all
continental regions. In addition, FASIR NDVI data tend to
show much stronger negative anomalies compared to
GIMMS for 1992. This difference is possibly a result of
different stratospheric aerosol optical thickness data sets
used in GIMMS and FASIR. Both data sets show positive
trends for North America, Europe and Asia, while only
FASIR shows a positive trend for Africa and both data sets
show no trends for Central/South America and SE Asia/
Australia. The regional correlation coefficients for the
NDVI anomalies are shown in the figure. Correlations are
generally poor (and not statistically significant) except for
Europe and Asia (>99%). The correlation between the
anomalies for boreal North America is high but poor for
temperate North American (not shown) producing a low
correlation for the continent.
[37] The 1994 disparity is largely a result of the different

FASIR, GIMMS approaches dealing with the NOAA 13
failure between NOAA-11 and NOAA-14 as discussed in
section 2.1. The anomalies are more similar during the rest
of the time series for northern latitude continental regions.

5.2. Evaluation and Comparison of the Initiative II
NDVI Series in the Context of Carbon
Cycle Modeling

[38] To determine which NDVI time series might be more
realistic, we use both the GIMMS and FASIR NDVI time

Figure 6. (top) North-south transect near 100 degrees W longitude, from Northwest Territories, Canada,
to South Dakota, United States. Both GIMMS (blue square) and FASIR (red triangle) NDVI data are
shown. (bottom) Expanded version GIMMS (blue square) and FASIR (red triangle) extending from 59 to
63 degrees North, with averaged Landsat NDVI observations superposed, based on top-of-atmosphere
reflectance (green) and surface reflectance (red).
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series as input to a global carbon cycle model, CASA, that
simulates the surface-atmosphere exchange of CO2 [Potter
et al., 1993; Randerson et al., 1996] (and described briefly
in the next section) to explore these implications. CASA
uses fPAR, derived from the NDVI record (as described in
the next section) and surface incident solar irradiance to
compute photosynthetically active radiation absorbed by the
canopy, and uses temperature and precipitation data to
compute light use efficiency and heterotrophic respiration.
Using CASA we predicted global interannual variation in
net land surface-atmosphere carbon exchange and compare
these values to those estimated from an atmospheric CO2

flux inversion study.
5.2.1. Approach
[39] CASA uses the light use efficiency approach

[Monteith, 1997] to characterize climate-induced deviations
in productivity capacity. Monthly global (1� � 1�) net
primary productivity (NPP) is calculated as the product of
incident photosynthetically active radiation (PAR), and its
fraction absorbed by the canopy (fPAR) and a light use
efficiency parameter, the latter dependent on temperature
and precipitation (for temperature, precipitation and solar
irradiance data, see Hansen et al. [1999], Adler et al. [2003],
and Zhang et al. [2004], respectively). Heterotrophic respi-
ration is computed using temperature and precipitation data

and also depends on modeled NPP. To convert NDVI into
fPAR we implemented the algorithm reported by Los et al.
[2000] in which NDVI is used to scale fPAR from some
minimum value (<0.05), corresponding to the minimum
NDVI observed for vegetation, to a maximum (0.95) repre-
senting the maximum (e.g., 98th percentile) observed NDVI,
hence full canopy closure. The scaling is dependent on
maximum and minimum NDVI observed for various vege-
tation types (e.g., Figure 3). The derivation of fPAR ‘‘nor-
malizes’’ the NDVI record allowing the FASIR and GIMMS
anomaly records to be evaluated in a consistent way.
[40] Since the dynamic range of NDVI is higher for the

FASIR than for GIMMS data sets the maximum/minimum
scalars used for each data set reflected these differences, but
were in fact small and showed consistent relationships
among the vegetation types. Figure 7 shows the NDVI
and fPAR annual anomalies for continental regions from
1982–1998. Each continental region consists of a number
of vegetation types. The sign of the anomalies in NDVI
correspond to those for fPAR, only the dynamic range of the
fPAR is larger since NDVI ranges between �0–0.8 while
fPAR ranges from �0.03–0.95.
[41] Using the calculated GIMMS and FASIR fPAR

records and climate data, we ran CASA to simulate NPP,
heterotrophic respiration (Rh) and the net flux to the

Figure 7. Time series plots showing annual GIMMS NDVI and fPAR anomalies (black solid, dashed
lines, respectively) and FASIR NDVI and fPAR anomalies (red solid, dashed lines, respectively) for
continental regions of the globe. Correlation coefficients (r) are given for NDVI anomalies.
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atmosphere (Rh-NPP or NEE). We have aggregated the
results to represent global land area. CASA was run to
equilibrium (annual NEE = 0 for each grid cell) using the
mean climate and fPAR for the 1982–1998 period and then
the interannual simulation was started and run forward from
January 1982 through December 1998 using observed time
series of fPAR and climate inputs. Figure 8a shows the
annual fPAR anomalies for the globe and Figures 8b and 8c
the NPP anomalies for FASIR and GIMMS respectively.

The larger range of the FASIR NDVI, hence fPAR, is
reflected in the range of NPP. NPP is largely driven by
fPAR in the CASA model with weaker effects from lower
variability in incident solar irradiance, and lower sensitivity
to temperature and precipitation. A 0.01 change in the
annual fPAR anomaly translates to about 1.5 Pg C/yr NPP
anomaly which means that a 0.01 change in the original
NDVI corresponds to about 2 Pg C/yr change in NPP. The
largest year-to-year NPP anomalies using FASIR as the input

Figure 8. Global fPAR anomalies and carbon fluxes from CASA: (a) annual fPAR anomalies for the
globe calculated from GIMMS (solid line) and FASIR (dashed line) NDVI records; (b) global net primary
production (NPP) and heterotropic respiration (Rh) fluxes calculated from observed climate record, using
the CASA biogeochemical model driven with FASIR NDVI/fPAR anomalies; and (c) same as Figure 8b,
except driven with GIMMS NDVI/fPAR anomalies.
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to CASA were about 3 Pg C/yr and generally <2 Pg C/yr
using GIMMS. Also plotted in Figures 8b and 8c are Rh
anomalies. In CASA Rh is determined by temperature
and precipitation controls on 9 carbon pools with varying
turnover times. However, since the same climate was use
for both CASA runs the differences in Rh are a result of
NDVI/fPAR-driven NPP variability. A large NPP anomaly
will result in a significant anomaly in the delivery of carbon
to heterotrophic carbon pools some of which have turnover
times of less than 1 year (e.g., leaf and root litter).
5.2.2. Simulation Results and Comparisons
[42] Figure 9 shows the difference between Rh and NPP

or NEE, the flux of carbon between the surface and
atmosphere. When it is positive it represents a source to
the atmosphere and negative a sink. Included in the
figure are the results of an atmospheric inversion study
[Rödenbeck et al., 2003] where land sources and sinks were
inferred from a model of atmospheric transport and surface
measurements of atmospheric CO2 partial pressure from a
global sampling network. The error bars represent 1 stan-
dard deviation about the mean. The fossil fuel source has
been ‘‘presubtracted’’ from the inversion results. The orig-
inal inversion results showed that the global land surface to
be on average for this period a carbon sink of about
1.5 Pg C per year for. In Figure 9 this constant 1.5 Pg C
sink was added to the inversion results since the CASA
simulations, were initialized to produce an equilibrium NEE
(i.e., NEE = 0) at the 1982 start of the evaluation period.
CASA simulations show a trend of increasing sink over the
time period that is not evident in the inversion.
[43] The inversion produces maximum year-to-year vari-

ability of about 2–3 Pg C/yr. The Transcom inversion study
[Baker et al., 2006; K. Gurney, personal communication,
2005] inferred maximum variability of around 3 Pg C/yr
as well, however, Bousquet et al. [2000] reported
maximums of around 1.5 Pg C/yr. The CASA simulations

produced maximum variations of about 1 and 3 Pg C/yr for
GIMMS and FASIR respectively. However, the CASA
model results do not produce the same timing in the
anomalies as the inversion. In fact for some periods the
anomalies are of opposite sign. For instance, the FASIR
driven simulations produced strong source anomalies in
1985–1986 and 1992 while the inversions show these to
be periods of neutral or significant sink behavior. With the
exception of 1983 neither of the NDVI driven simulations
produced the strong source signals seen in the inversion
during the El Ninos of 1987, 1994–1995 and 1998.
5.2.3. Discussion
[44] Our analysis in the previous section indicates little

correspondence between either the FASIR NDVI or the
GIMMS NDVI anomaly records and the global land source/
sink variability inferred from atmospheric inversion; nor do
the CASA simulations of NEE when driven by either
FASIR or GIMMS NDVI. Assuming that the climate data
used to drive the model and the inversion results for the
global land are correct, this lack of agreement could be
caused by errors in the NDVI records and/or errors and
omissions in the modeling of NEE.
[45] In general, NEE can be described by the following

equation:

NEE ¼ Rh T; qð Þ þ E�
Z
t

e T; qð Þ * fPAR * PARf gdt:

The product of the last three terms (in brackets) describes
NPP: PAR and fPAR defined in 5.2.1 (fPAR is derived
observationally from NDVI) records the relative amount of
radiation absorbed by the canopy, and e is the light-use
efficiency of vegetation as a function of temperature (T) and
soil moisture (q). The first two terms describe offsetting
transfers of carbon to the atmosphere. Rh describes
heterotropic respiration of biomass debris (leaves, roots,

Figure 9. Global net ecosystem exchange (NEE) simulated by CASA using FASIR and GIMMS
records plotted with observed global fluxes derived from atmospheric carbon flux inversion of Rödenbeck
et al. [2003]. The mean land carbon sink of 1.5 PgC/yr for this period was added to the inversion results
to emphasize the comparison of interannual variability between the inversion and CASA simulations.
Positive NEE corresponds to carbon transfer from the land to the atmosphere (e.g., land CO2 source);
NEE is calculated as Rh-NPP.
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soil organic matter), and E corresponds to nonphysiological
carbon emissions mostly due to biomass burning. The
individual contributions of NPP, Rh or fire to the atmo-
spheric CO2 signal can be of opposite signs, and
compensating, hence only the aggregate effect, not the
individual contributions, is reflected in the atmospheric CO2

inversion analyses. The version of CASA used here
simulates only the first two processes (but see van der
Werf et al. [2004]).
[46] At a minimum, it is clear that the Initiative II NDVI

anomaly records alone cannot explain the global atmospheric
CO2 variability derived from the inversion analyses. In
CASA, the observed variability in NDVI translates directly
to variations in fPAR, which in turn cause large swings in
NPP. Since variability in Rh is influenced by short-term pools
of accumulated carbon as well as climate Rh will also
respond in parallel with NPP to fPAR.
[47] One possibility is that the NDVI records are correct,

and other factors not accounted for in CASA compensate
for the effects of fPAR variability on global NEE. First, fire
emissions may dominate variability of atmospheric CO2

fluxes. A number of researchers have argued that fires
associated with El Nino events contribute significantly to
increased atmospheric CO2 growth rate during these periods
[Langenfelds et al., 2002; Schimel and Baker, 2002; van der
Werf et al., 2004], and van der Werf et al. [2004] estimated
that fires contributed a 2.1 PgC/yr growth rate anomaly
during the 1997–1998 El Nino. If these fire emissions were
added to the CASA simulations shown in Figure 9, most of
the inversion fluxes would be captured for that period.
[48] In addition to fire, others have suggested that climate

controls on light-use efficiency or heterotrophic respiration
may act as a primary forcing on CO2 fluxes. Nemani et al.
[2003] showed a negative correlation between global atmo-
spheric growth rate in CO2 and modeled NPP during the
large El Nino event of 1997–1998. NDVI tended to show
positive anomalies for that period (see Figures 8 and 9), but
in their model, physiological drought reduced NPP. Other
analyses have shown similar drought limitations on produc-
tivity and/or temperature stimulation of respiration [Tian et
al., 1998; Zeng et al., 2005]. Lucht et al. [2002] showed that
negative anomalies in modeled LAI in the boreal latitudes in
1992 following the Mt. Pinatubo eruption corresponded to
negative anomalies in NDVI yet their model produced a
carbon sink in this region, which was in agreement with
atmospheric inversion results. While in their model decreas-
ing LAI did result in a decrease in modeled NPP, the cooler
summer temperatures inhibited modeled Rh even more
resulting in the net sink. It should be noted that the version
of CASA used in this analysis includes temperature and
moisture scalars designed to simulate climate effects on
vegetation physiology and heterotrophic respiration. How-
ever, it is certainly possible that CASA is currently under-
estimating these effects.
[49] Finally, it is also possible that the NDVI anomalies

themselves are wrong. Large interannual anomalies in
fPAR, as suggested by the Initiative II data sets, imply
significant anomalies in the seasonal duration of canopy
LAI and/or its seasonal maximum, both of which would
affect annual productivity anomalies [Barr et al., 2004].
Unfortunately there are few in situ measurements of inter-
annual variability of fPAR/LAI against which to assess

whether the fPAR variability inferred from the NDVI
records is valid. Barr et al. [2004] reported strong links
between interannual variability in LAI, GPP and NEE for a
deciduous boreal forest (aspen), where LAI variations were
driven primarily by spring temperature and by summer
drought. The interannual variability in fPAR derived from
their in situ–measured LAI were on the order of 0.03 and
consistent with the anomalies derived from the Initiative II
NDVI records. Seasonal and interannual variability of LAI
in herbaceous vegetation types especially in response to
water availability is well documented and these have been
linked to productivity and NEE variability [e.g., Flanagan
et al., 2002], but contributions of nonforested ecosystems to
interannual variations in carbon storage should be small
because the biomass of these systems has short turnover
times and most of the fixed carbon is returned to the
atmosphere each year. We have not been able to find studies
of interannual variability in fPAR/LAI measured in situ in
evergreen forest types (e.g., boreal, tropical). These ecosys-
tems are critical to global carbon cycling, but also prob-
lematic for NDVI estimation because of the short growing
season for Boreal forests and persistent cloud cover in the
tropics.
[50] We cannot conclude that our NDVI records, either

FASIR or GIMMS, are incompatible with the inversion
analyses. However, we can caution researchers that using
observational NDVI alone to estimate carbon fluxes is
unlikely to match atmospheric measurements. Either the
NDVI records themselves are in error, or the contribution of
fPAR variability to the interannual variation in NEE is small
in comparison to climate-induced interannual variations in
light use efficiency, Rh, or fire emissions. Our analyses of
the Initiative II NDVI time series also indicate the need for
continued improvement in the longer-term satellite derived
surface vegetation records including in situ validation, along
with improved sampling of atmospheric CO2 variations and
improved transport models supporting inversion analyses.

6. Conclusions

[51] In this paper we have compared the FASIR and
GIMMS AVHRR NDVI data sets included in ISLSCP
Initiative II [Tucker et al., 2005]. Although both data sets
start by compositing the AHVRR GAC record, each pro-
cessing stream is unique. The FASIR data set attempts a
series of physically based corrections to the original
AVHRR data set, including atmospheric correction (Ray-
leigh and ozone), BRDF correction to standard sun-target-
sensor geometry, and time-space filtering to remove snow
and cloud contamination. The GIMMS data set adopts a
more empirical approach, eschewing full atmospheric cor-
rection, and relying on empirical-mode decomposition to
remove outliers, and normalizing NDVI values to the later
SPOT Vegetation record.
[52] Our principal conclusions are as follows.
[53] 1. Absolute NDVI values differ considerably be-

tween the two data sets, both seasonally and geographically.
Most of these differences are persistent across the 12 year
record considered here, and can be understood as the result
of specific processing choices. In particular, NDVI values in
the humid tropics are systematically lower in the GIMMS
record, while nonsummer values in northern latitudes are
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systematically higher in the FASIR record. NDVI values in
midlatitude deserts and agricultural areas generally agree
between the two records.
[54] 2. As opposed to absolute values, NDVI anomalies

(monthly, annual) generally agree between the two data sets
for any given location. Agreement is better for later parts of
the record (e.g., 1992–1998). Two notable exceptions are
1994 and 1984–1986. The former corresponds to the
coverage gap between NOAA-11 and NOAA-14, during
which the two records rely on different data sources. The
origin of the 1984–1986 anomaly disagreement is not clear.
[55] 3. The fPAR absorbed by vegetation calculated from

each record closely follows the NDVI anomalies, and shows
large interannual variations. Using a standard light-use
efficiency model for calculating net primary productivity
(NPP), we find that global anomalies of �0.010 in NDVI
correspond to anomalies of �0.013 in fPAR, and an NPP
anomaly of �2.0 Pg C.
[56] 4. Using the NDVI records to drive the CASA

biogeochemical model results in global carbon fluxes that
show little or no correlation with sources and sinks derived
from inverting atmospheric CO2 measurements [Rödenbeck
et al., 2003]. Although the fPAR-driven fluxes show year-
to-year variations comparable in magnitude to the inversion
results, neither NDVI record produces a temporal pattern
that matches the inversion results.
[57] Users should not rely on absolute NDVI values,

particularly in the context of physical models. Although it
would be difficult to find a simpler spectral index than
NDVI, the processing chain required to convert AVHRR
observations to a consistent surface NDVI record is com-
plex and at this date, incomplete. As a result the FASIR
NDVI and GIMMS NDVI records must be treated as
different measurements. In part this situation reflects the
inherent limitations of the AVHRR sensors, which were
never intended for long-term terrestrial research. It can be
hoped that future NDVI data sets, using carefully calibrated,
screened, and atmospherically corrected data from MODIS
and VIIRS, will result in a more consistent record of Earth’s
vegetation. Even with the current limitations of the AVHRR
observational record, monthly and annual NDVI anomalies
show reasonable agreement between the FASIR and
GIMMS, suggesting that users should try to use normalized
(anomaly) NDVI values rather than absolute values.
[58] The observation that neither NDVI data set can be

correlated with observed carbon fluxes has significant
implications for carbon modeling. Taken at face value, the
CASA model results, driven by the NDVI anomaly record,
predict large variations in vegetation fPAR and LAI that are
not driving variability in global carbon fluxes. It is of course
possible that CASA and/or the NDVI anomaly records are
wrong. Other factors that may not be adequately represented
in this version of CASA, such as the physiologic response
to climate stress or fire emissions, could be compensating
for real variations in NDVI/fPAR. Alternatively, large
anomalies in NDVI/fPAR may not be real. Indeed, it is
likely that modeling ecosystem productivity using a simple
‘‘climatological’’ mean fPAR record, supplemented with
ENSO-driven fire emissions would produce a reasonable
match to the inversion results shown in Figure 9. The results
do indicate that researchers should be cautious when using

NDVI-driven models to predict net ecosystem exchange
without independent comparison with observed fluxes.
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