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Human-induced greening of the northern
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Significant landgreening in thenorthernextratropical latitudes
(NEL) has been documented through satellite observations
during the past three decades1–5. This enhanced vegetation
growth has broad implications for surface energy, water
and carbon budgets, and ecosystem services across multiple
scales6–8. Discernible human impacts on the Earth’s climate
system have been revealed by using statistical frameworks
of detection–attribution9–11. These impacts, however, were not
previously identified on the NEL greening signal, owing to
the lack of long-term observational records, possible bias of
satellite data, di�erent algorithmsused to calculate vegetation
greenness, and the lack of suitable simulations from coupled
Earth system models (ESMs). Here we have overcome these
challenges to attribute recent changes in NEL vegetation
activity.We used two 30-year-long remote-sensing-based leaf
area index (LAI) data sets12,13, simulations from 19 coupled
ESMs with interactive vegetation, and a formal detection
and attribution algorithm14,15. Our findings reveal that the
observed greening record is consistent with an assumption
of anthropogenic forcings, where greenhouse gases play a
dominant role, but is not consistent with simulations that
include only natural forcings and internal climate variability.
These results provide the first clear evidence of a discernible
human fingerprint on physiological vegetation changes other
than phenology and range shifts11.

This study examines the growing season LAI over the NEL
(30–75� N). The LAI is a measurable biophysical parameter using
satellite observation, an archived prognostic variable of the Coupled
Model Intercomparison Project Phase 5 (CMIP5) ESMs, and a
direct indicator of the leaf surface per unit ground area that
exchanges energy, water, carbon dioxide and momentum with the
planetary boundary layer. We employed the recently published
LAI3g data set12 and the GEOLAND2 LAI data13, both of which
were quality-controlled over the NEL region for the 1982–2011
period (Supplementary Information 1). We compared the observed

changes of LAI to simulated variations from multi-model results
obtained from the CMIP5 archive (Supplementary Information 2
and Supplementary Table 1). These ensemble simulations comprise
ALL, with historical anthropogenic and natural forcings, GHG,
with greenhouse gases forcing only, NAT, with natural forcing
only, CTL, with internal variability (IV) only, esmFixClim2, with
CO2 physiological e�ects, and esmFdbk2, with greenhouse gases
radiative e�ects. Beyond the standard comparison of time series and
patterns of trends, twomethods were applied to detect and attribute
changes in observed LAI, including a formal ‘optimal fingerprint’
analysis (Methods).

From 1982 to 2011, LAI3g, GEOLAND2 and their mean
exhibited greening trends over the NEL vegetated area (85.3%,
69.5% and 80.6%, respectively), except across a narrow latitudinal
band over Canada and Alaska, and in a few spots over Eurasia
(Fig. 1a–c). The largest positive increase is observed in western
Europe and eastern North America for both LAI products,
consistent with previous results1–5. The multi-model ensemble-
mean LAI changes under NAT forcing had negative trends
(browning) across vast areas of North America (51.9% of North
America vegetated area) and smaller positive trends over Eurasia
(80.8% of Eurasia vegetated area) than in the averaged satellite
observations (86.8%of Eurasia vegetated area) (Fig. 1d). By contrast,
the trend from the ALL ensemble mean is closer to observations
(Fig. 1e). The spatial distribution of observed LAI trends was
also captured well by the ensemble-mean GHG-only simulations
(Fig. 1f). This indicates that the combined anthropogenic e�ects,
particularly the well-mixed greenhouse gases, have contributed
largely to widespread greening trends of the NEL for the past
three decades. Similar results are obtained for the 1982–2011
period when di�erent definitions of growing season are chosen
(Supplementary Fig. 1).

In the NEL, the two remotely sensed LAI anomalies showed a
large interannual variability superimposed on an overall increasing
trend (Fig. 2). These observed trends agree with those found in the
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Figure 1 | Spatial distribution of LAI trends for 1982–2011. a–f, Spatial distribution of the linear trends in the growing season (April–October) LAI
(m2 m�2 per 30 yr) in LAI3g product (a), GEOLAND2 product (b), the mean of LAI3g and GEOLAND2 (OBS mean) (c), CMIP5 simulations with natural
forcings alone (NAT) (d), CMIP5 simulations with anthropogenic and natural forcings (ALL) (e) and CMIP5 simulations with greenhouse gas forcings
(GHG) (f). The hatched area in c indicates that both satellite-based LAI data sets agree on the increasing trend of LAI, and the area with black crosses
indicates that both satellite-based LAI data sets agree on the decreasing trend of LAI. The hatched area in d–f indicates that at least 90% of the simulation
members agree on the increasing trend of LAI; the area with black crosses indicates that at least 90% of the simulation members agree on the decreasing
trend of LAI.

ALL and GHG ensembles, but were much larger than those simu-
lated in the NAT ensemble (Fig. 2 and Supplementary Figs 2 and 3).
Many observed values fall well outside the simulated 5th–95th
percentiles associated with individual NAT realizations, suggesting
a clear inconsistency between observations and this ensemble. The
observations, however, are much more consistent with the multi-
model ensembles that are forced by the human-caused increases
of greenhouse gases. The comparison of the 1982–2011 observed
trends (+0.143, +0.163 and +0.153m2 m�2 per 30 yr for LAI3g,
GEOLAND2, and their average) with a set of 30-year segments
from pre-industrial control simulations (Fig. 3a) confirms that the
observed trends significantly exceed the range of values expected
from IV only under a stationary climate (±0.066m2 m�2 per 30 yr,
p-value < 10�4) (Supplementary Information 3). These observed
trends also do not agree with trends in the NAT ensemble (Fig. 3b,
p-value < 10�4), which, on average, is positive but much smaller
(+0.017 ± 0.054m2 m�2 per 30 yr, or +0.017 ± 0.066m2 m�2

per 30 yr if the broadest IV estimate is used). In contrast, the
observed trends are consistent with those in the ALL ensemble
(Fig. 3a, +0.133 ± 0.089m2 m�2 per 30 yr, p-value = 0.64) as
well as GHG ensemble (Fig. 3b, +0.129 ± 0.120m2 m�2 per 30 yr,
p-value = 0.67). Similar results can be found with di�erent
definitions of the growing season (Supplementary Fig. 4).
According to the definitions used in IPCC Fourth Assessment
Report (AR4)9, this analysis allows us to attribute at least part of
the observed LAI changes to human influence because the trends
are detectable, consistent with the expected response to all forcings,

and inconsistent with the expected response to natural forcings
only (that is, alternative, physically plausible causes).

A more comprehensive and formal method used in IPCC
Fifth Assessment Report (AR5)10 for attributing observed changes
involves an optimized regression of observations onto the expected
response frommodels to one or several external forcings (Methods).
The main output from this type of analysis is the scaling factor
� , which scales the model’s responses to best fit the observations.
Assessing whether the unexplained signal (that is, the residuals
of the regression) is consistent with IV is also a key diagnosis in
this method. This diagnosis is usually achieved using a residual
consistency test (RCT). We applied the detection and attribution
(D&A) algorithm14,15, to the ALL and GHG-only temporal response
patterns of three-year-mean LAI (as in Fig. 2), respectively. We
considered the average of all CMIP5 models in Multi1 (only one
simulation from each model) and the average of the models with
larger ensembles in Multi3 (that is, models with at least three
members) (Supplementary Table 1). The observed LAI change
over 1982–2011 is found to be significant, as � scaling factors are
significantly larger than 0 (Fig. 4). The 90% confidence intervals
of � include 1, which means that the observations are consistent
with models, in terms of the magnitude of the forced ALL and
GHG-only responses. These two results are fairly robust if response
patterns from individualmodels or individual observed data sets are
considered. However, the RCT is strongly rejected in most cases,
even if all forcings are included, indicating that the residuals of
the fit are much larger than those expected from the simulated IV.
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Figure 2 | Observed and simulated 1982–2011 time series of LAI
anomalies. The three-year-mean growing season (April–October) LAI
anomalies over land of the NEL for both LAI3g and GEOLAND2
satellite-derived observations, for CMIP5 simulations accounting for solely
natural (NAT) and greenhouse gas forcings (GHG), as well as CMIP5
simulations accounting for both anthropogenic and natural forcings (ALL).
The ensemble (ens.) mean for each set of forcings is given in blue, yellow,
and red solid lines for NAT, GHG, and ALL, respectively. Individual
satellite-derived observations are indicated with dashed black lines; the
observational average is given with a bold solid black line. Blue, yellow, and
red shading represent the 5%–95% confidence interval for NAT, GHG, and
ALL ensembles, respectively (computed assuming a Gaussian distribution).
The grey-hatched area represents the 5–95% confidence interval for the
range of variability for the centennial-long pre-industrial unforced control
simulations (CTL).

To deal with a possible underestimation of IV by ESMs, we tested
the robustness of those key results to several inflated IV assumptions
(Supplementary Information 4). Detection was found to occur with
all values of IV variance that are consistent with observations, and

even IVmultiplied by a factor as large as 8, which strongly reinforces
confidence in our results.

With the human influence on recent evolution of NEL vegetation
activity established, we are now in a position to discuss the
possible mechanisms behind those human influences (for example,
the impacts of nitrogen deposition, land use/land cover change
(LULCC), and the CO2-induced physiological versus the GHG-
induced climate e�ects) on LAI changes. We analysed a smaller
subset of CMIP5 ensemble models representing mechanisms of
interest without using the D&A methodology (Supplementary
Table 1). D&A techniques are not useful for discriminating between
these forcings, as the corresponding signals are usually too collinear
over time, leading to a signal-to-noise ratio that is too small.
For the ALL simulations, models including the nitrogen cycle
exhibited higher LAI trends than those lacking explicit nitrogen
cycles, reflecting in part a human influence from increased nitrogen
deposition (Supplementary Fig. 7a,b). Consistent with the results
of o�ine land surface models including carbon–nitrogen dynamics
(for example, Fig. 4c in ref. 4), the di�erence seen in the ESMs is
particularly strong over eastern North America and eastern Asia,
areas of known high levels of human-caused nitrogen deposition16.
The nitrogen-enabled models appear to capture observed LAI
trends in these regions (Fig. 1c). Slightly negative LAI trends
observed over southwestNorthAmerica, westernCanada, and spots
of Eurasia seemed to correspond to the LULCC-induced vegetation
browning at the same locations (Fig. 1c and Supplementary Fig. 7e).
Nonetheless, the net LULCC-induced LAI changes from CanESM2,
the only model providing LULCC-only simulations, were fairly
small (Supplementary Fig. 9). CO2 fertilization stimulated the
vegetation growth over large areas of the NEL (83.8% vegetated
area) except in central North America (Supplementary Fig. 7f).
The response of modelled LAI to GHG-forced climate change
shows regions of decrease that coincide mainly with reduced
precipitation and regions of increase that coincide with regions
of higher precipitation and warmer temperatures (Supplementary
Figs 7g and 8).

Previous work assessing modelled and observed LAI has focused
on phenological variation, interannual variability, and multiyear
trends; spatiotemporal changes in LAI were attributed to variation
in climate drivers (mainly temperature and precipitation)17–21. This
study adds to an increasing body of evidence that the NEL has
experienced an enhancement of vegetation activity, as reflected by
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Figure 3 | Parameterized frequency distributions of LAI 1982–2011 30-year-long trends. a,b, Comparison of the observed trends (m2 m�2 per 30 yr) over
land of the NEL from both LAI3g and GEOLAND2 satellite-derived observations, against the Gaussian-fitted probability density function (pdf) of simulated
trends from CMIP5 simulations accounting for unforced pre-industrial control variability (CTL, in grey), solely natural forcings (NAT, in blue) and
greenhouse gas forcings (GHG, in green), as well as CMIP5 simulations accounting for both anthropogenic and natural forcings (ALL, in red). Individual
satellite-derived observations are indicated with long and short vertical dashed black lines for LAI3g and GEOLAND2, respectively; the observational
average is given with a bold solid black line. a, Comparison between trends as estimated from satellite-derived products and as simulated from both
individual 30-year segments taken from the CTL simulations and historical ALL simulations. b, Comparison between trends as estimated from
satellite-derived products and as simulated from NAT and GHG simulations. The dotted blue line, representing the pdf, corresponds to the NAT pdf, but
using a variance equal to that diagnosed from the CTL ensemble.
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Figure 4 | Results from optimal D&A for 1982–2011 time series of LAI
anomalies. a–c, The D&A analysis was performed over land of the NEL on
ensemble-mean 1982–2011 time series of LAI anomalies. Response patterns
were derived from CMIP5 simulations accounting for both anthropogenic
and natural forcings (ALL, in red), or greenhouse gas forcings only (GHG, in
green), in a one-signal detection analysis. The observational average of
LAI3g and GEOLAND2 was used as reference in the analysis. Scaling
factors (�–see text) best estimates and their 90% confidence intervals (a),
attributable trends over the 30-year-long time series (b) and p-value of the
residual consistency test (RCT) (c) are shown. Results were obtained from
a total least square (TLS) analysis using the multi-model mean or selected
individual model responses. ‘Multi1’ and ‘Multi3’ refer to two di�erent
CMIP5 ensemble means (see text). Observational uncertainty was
assessed using individual satellite-derived observations (LAI3g or
GEOLAND2) regressed onto the Multi1 response pattern.

increased trends in vegetation indices1–5, aboveground vegetation
biomass6,7, and terrestrial carbon fluxes22 during the satellite era.
Our analysis goes beyond previous studies by using D&A methods
to establish that the trend of strengthened northern vegetation
greening is clearly distinguishable from both IV and the response
to natural forcings alone. It can be rigorously attributed, with
high statistical confidence, to anthropogenic forcings, particularly
to rising atmospheric concentrations of greenhouse gases. As an
attempt to decipher which mechanisms are behind those trends, we
further analysed the contribution of nitrogen deposition, LULCC,
CO2 fertilization and GHG-induced climate change to the NEL
vegetation growth. This provides potential leads to understanding

the geographic structure of the vegetation response to selected
anthropogenic forcing agents.

An accurate quantification of the responses to individual human
and natural drivers, however, needs more research e�orts, owing to
uncertainties associated with the ESMs, weaknesses of the CMIP5
experimental design, and limitations in the observations. Relative
to the observations, the simulations with ALL and GHG forcings
illustrated relatively weaker interannual variability of vegetation
growth (Fig. 2 and Supplementary Figs 2 and 3). This discrepancy
may arise from structural errors of the land component in the ESMs
(for example, weak or no representation of vegetation mortality,
disturbance and successional dynamics)23–25. Because spatial and
temporal patterns of vegetation growth are tightly coupled with
precipitation variability4,17,18, the underestimation could also arise
from the reported underestimation of interannual precipitation
variability in CMIP models over Northern Hemisphere land26,27.
Multi-model ensemble means can have persistent biases, such
as overprediction of growing season length due to advanced
spring growth and delayed autumn senescence in Northern
Hemisphere temperate ecosystems17,28. If such a phenological bias
were changing steadily over time, it could influence estimation of
LAI trends reported here. We mitigate against this type of bias by
comparing our results for di�erent seasonal periods. Because our
results are consistent for di�erent definitions of growing season
(Supplementary Figs 1–4 and 6), early and late season model biases,
to the extent they are present in our multi-model data set, seem
to be stationary in time. Understanding and ranking the multiple
reasons for deficiencies in CMIP5 simulations, however, remain
extremely di�cult, given the lack of global LAI simulations with
land surface models driven by common observed environmental
forcings. Such an obstacle should be overcome in the next phase of
CMIP, which will include an international intercomparison of the
land surface components from the participating ESMs29. Long-term
remote-sensing data are often contaminated by clouds and snow
cover, and are impacted by the change of satellites30. For example,
the LAI3g data set was probably influenced in 1991 by the eruption
of Mount Pinatubo and subsequent loss of orbit by NOAA 11,
seen particularly in the world’s forests12; the merging of reflectance
information from di�erent satellites during the pre- and post-2000
periods for both LAI3g and GEOLAND2 products has the potential
to cause inhomogeneity in the data12,13. These observational uncer-
tainties, which are not considered here, might artificially increase
the observed interannual variability. Our sensitivity tests, however,
show that our key findings are robust to these issues, and the finger-
print patterns assessed by the ALL and GHG ensembles can still be
identified quantitatively in the relatively short instrumental record.

Given the strong evidence provided here of historical human-
induced greening in the northern extratropics, society should
consider both intended and unintended consequences of its
interactions with terrestrial ecosystems and the climate system.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Detection and attribution. Two distinct statistical approaches were used to detect
and attribute the LAI changes in this study. The simple comparison of observed and
simulated LAI trends (Fig. 3) is based on a simple T -test, which is further discussed
in Supplementary Information 3. Then a more conventional D&A analysis is based
on an optimal regression technique in which observations Y are regressed onto the
expected response to historical forcing changes X⇤ (that is, Y =X⇤� +", where "

denotes IV)14,15,31. The scaling factors � are fitted using a total least square (TLS)
approach, where the expected response X⇤ is estimated from model-simulated
responses X , which are also contaminated by IV within the model simulation,
X =X⇤ +"x . The model is fitted following the method in ref. 15. The scaling factor
� describes how the expected response has to be scaled to best match observations.
Conclusions in terms of the D&A are based on the best-estimate and confidence
interval on � . Attributable trends (that is, the trends explained by the external

forcing under scrutiny)32 are derived by multiplying the model-simulated trend
and the estimated scaling factor �̂ . Similarly, upper and lower bounds of
attributable trends are derived from the corresponding upper and lower bounds of
� . We applied these statistical methods to the NEL average of three-year-mean LAI,
as shown in Fig. 2. Natural internal variability is evaluated from unforced control
simulations from several CMIP5 climate models, and expected response patterns
are also taken from CMIP5 models (Supplementary Table 1).
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