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ABSTRACT OF THESIS 
 
 
 

USING CONTINUOUS [CO2] DATA IN INVERSE MODELS TO REDUCE 

UNCERTAINTY IN GLOBAL AND REGIONAL ESTIMATES OF CARBON FLUX 

 
 

 
The current atmospheric CO2 concentration observing network is based on weekly 

flask samples from the atmosphere, most of which are taken in remote marine locations.  

These sites are used because the tropospheric air being sampled is well-mixed and 

isolated from influences of populated and vegetated areas and therefore sufficient to 

capture background concentrations.  These networks however, are limited by the lack of 

measurements from continental sites and are therefore too sparse to monitor regional 

fluxes.  The continental regions suffer most from lack of observations, due to difficulties 

in measuring where landscape heterogeneity, strong vertical gradients, and dynamic 

diurnal cycles persist.  Measurements taken at tall tower sites try to avoid these 

difficulties by measuring in the mixed-layer, but they are very expensive to implement 

and maintain.  Shorter flux towers take measurements in the canopy surface-layer, but the 

grid cells of global circulation models represent measurements from the higher mixed-

layer.  In order to harmonize real observations and theoretical models there must be 

reconciliation between these disparate representations.  The measurements of shorter 

surface-layer flux towers would be reasonable to use if they could be extrapolated to 

represent mixed-layer CO2 concentrations.   
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“Virtual” tall towers might be the answer to this problem as they can be 

constructed using measurements of calibrated CO2 and fluxes from short towers, in a 

methodology that is currently being tested at a real tall tower in Wisconsin.  

 

Previous studies in optimization of carbon observing networks considered any 

global grid cell as eligible for selection as a measurement site.  In reality, measurement of 

mean CO2 over highly variable terrestrial regions is very impractical and expensive.  A 

global network of eddy-covariance flux towers already exists in which continuous 

measurements of CO2 are taken, as well as measurements of sensible heat (H) and latent 

heat (LE), such that net ecosystem exchange (NEE) can be estimated.  If the CO2 

measurements were calibrated, these surface layer values could be extrapolated to the 

mixed-layer using similarity theory providing a means to sample the continental mixed-

layer for use in global inversions to further constrain the carbon budget.  With this 

method for estimating the mid-day continental boundary layer CO2 from calibrated CO2 

and eddy-covariance measurements at flux towers, a network of virtual tall towers could 

be readily implemented using existing infrastructure and minimal additional 

instrumentation.  This is potentially a reasonable solution to the problem of large 

underconstrained continental regions.  The purpose of this study is to investigate to what 

degree incorporating precise virtual tall tower [CO2] data into inversions of global 

transport models will reduce global and regional estimates of carbon fluxes, and to 

determine if this would further constrain the continental regions that currently persist as a 

problem to global optimization. 
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Using the Transcom3 experimental protocol, sites where high-frequency 

timeseries were saved from the forward runs of 12 transport models were used as eligible 

sites for possible global networks.  The fluxes were optimized to fit the monthly mean of 

mid-day values by sub-sampling the global fields during the afternoon only, when this 

method works best.  

 

I used a genetic algorithm optimization scheme to determine which existing 

measurement sites should be grouped together in a network that minimizes the root mean 

square uncertainty of carbon flux estimates.  The algorithm produces the most “fit” 

network of flux tower sites by comparing and prioritizing them according to their 

performance in the inversions. 

 

I performed a regional and global experiment to determine which configuration of 

five or ten towers, respectively, should be implemented first as virtual tall towers for the 

greatest uncertainty reduction.  In the North American experiment, the optimal network 

selected five sites located in North Carolina, Kansas, Illinois, Tennessee, and Maryland.  

Overall, the strategies of bracketing the main flux areas and making observations through 

a gradient of fluxes didn’t work well in the Transcom3 inversions.  The best virtual tall 

tower networks emphasize placement of measuring sites in and just downwind of strong 

fluxes.  In the global selection of ten towers, the algorithm selected four sites in North, 

Central, and South America in the strong flux areas of the tropics and eastern US.  It 

selected two towers in southern Europe, even though Europe has a dense network, to 

constrain the regions of North and South Africa.  Two towers were selected in Thailand 
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and two in Japan to constrain temperate and boreal Asia, respectively.  In both 

experiments, using these optimal networks resulted in the most uncertainty reduction. 

 

In another experiment, I tested the sensitivity of flux uncertainty reduction to 

representation error.  The results show that adding five, ten and 24 virtual tall towers to 

the existing tall towers and flask sampling network reduced carbon flux estimate 

uncertainties in North America significantly by 25%, 50%, and 75%, respectively, as 

representation error is minimized to 2 ppm.  This indicates that virtual tall towers can 

contribute meaningful information to regional and global inversions, thereby constraining 

continental regions and carbon budget estimates at minimal cost in a short amount of 

time.  
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CHAPTER  1. INTRODUCTION 
 

1.1 Carbon in the Atmosphere 

 

The current atmosphere is composed mostly of nitrogen and oxygen, in portions 

of 78% and 21%, respectively.  In addition, there are trace amounts of water vapor, 

carbon dioxide, and ozone, which constitute less than 1% of the atmosphere’s entire 

mass, that have significant influence over the Earth’s climate due to their characteristics 

for absorption and emission of thermal infrared energy [Wallace and Hobbs, 1977].  The 

earth’s surface temperature is observed to be higher than the effective earth temperature 

needed to balance the planet’s radiation budget [Hartmann, 1994], and this is due to the 

presence of the atmosphere and these radiatively active minority constituents that make 

the surface of the planet warm enough to maintain life.  Carbon dioxide contributes to 

this warming effect as a gas that is a weak absorber of visible light (shortwave) and a 

strong absorber of thermal infrared radiation (longwave).  Its presence in the atmosphere 

implies that longwave radiation is being captured and re-emitted to the surface acting to 

insulate the planet.  Because the surface is receiving more radiation from this layer, it 

compensates by emitting at a higher temperature and in this way the surface is warmer 

than it would be without an atmosphere.  The climate is therefore sensitive to changes in 

the concentrations of these gases whether it be part of a natural cycle or induced by 

human activities.  
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During one annual cycle, approximately 120 Gigatons (Gt) of carbon (1 Gt C = 1 

billion tons = 1 Pg C = 1015 g carbon) are exchanged between the atmosphere and the 

biosphere, while the ocean and atmosphere exchange ~ 90 Gt.  As levels of CO2 increase, 

questions have arisen concerning the relationship between greater concentrations of 

greenhouse gases in the atmosphere and changing global climate [Tans, 1990].  Changes 

in the atmosphere effect change in the entire earth system as there is coupling between 

the ocean, biosphere, and cryosphere.  Climate variability is thought to be a response by 

these systems to changes in external forcing of incident radiation as well as a response 

from internal fluctuations that induce powerful feedback mechanisms [Wallace and 

Hobbs, 1977].  The interaction of these systems is complex and difficult to observe. Thus, 

the relationship between increasing CO2 and global warming is not simple, unilateral, or 

obvious. 

 

The Intergovernmental Panel on Climate Change (IPCC) was established by the 

United Nations in 1988 to serve as the scientific platform that informs the negotiations 

between countries on climate change and global warming.  IPCC (2001) estimated that 

the average global temperature has increased by 1 degree Celsius over the last 100 years.  

They also concluded that the 1990s were the warmest decade, and that 1998 was the 

warmest year globally in the instrumental record that dates back to 1861.  The average 

global surface temperature is calculated to be the average of near surface air temperature 

over land and sea, and has increased since 1861.  During the 20th century, the IPCC 

estimates this increase to be 0.6 ± 0.2°C [Houghton et al., 2001].  Debate continues as to 
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whether this increase in temperature is due to rising levels of greenhouse gases in the 

atmosphere or part of a natural millennial-scale cycle. 

 

1.2 Influence of Fossil Fuel Burning on Atmospheric Carbon 

 

Fossil fuel begins as reduced organic matter that has accumulated very slowly in 

underground reservoirs for millions of years.  It becomes oxidized during combustion and 

one of the many by-products that are formed, namely carbon dioxide (CO2), remains as a 

stable substance in the atmosphere.  Because this gas exists in trace amounts that are 

circulated without undergoing chemical reactions, it is commonly referred to as a 

“tracer”. 

 

Increasing emissions from fossil fuel burning, deforestation, cement 

manufacturing, and changes in land use have resulted in a ~ 30% increase in atmospheric 

concentrations of CO2 since the 1870s [IPCC, 2001].  The level of CO2 has risen from 

280 ppmv (parts per million by volume of dry air) prior to the industrial revolution of the 

late 19th century, to 367 ppmv in 1999 [IPCC, 2001].  This trend has been recorded at the 

Mauna Loa observatory in Hawaii since 1958, by the Scripps Institution for 

Oceanography (SIO) and the National Oceanic and Atmospheric Administration 

(NOAA).  Figure 1 shows the historical record from this site. 
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Figure 1.   The historical CO2 concentration record at the Mauna Loa observatory. 

 

 

The record clearly indicates a seasonal variability in concentration corresponding 

to the annual northern hemispheric pattern of CO2 uptake by photosynthesis during the 

growing season, and subsequent release in winter when more plants are dormant and soil 

microbial respiration exceeds photosynthetic uptake.  The data record shows that a 17% 

increase in the mean annual concentration of CO2 has occurred since 1959 [Keeling et al., 

2003]. 
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The history of atmospheric CO2 is important because it can be used to 

discriminate between the biological or natural source and sink activity of the Earth’s 

surface and the constructed anthropogenic emission rate.  Carbon emissions from fossil 

fuel combustion are estimated by the Global Emissions Inventory Activity (GEIA) 

(http://geiacenter.org), a component of the International Atmospheric Chemistry 

Program (IGAC) of the International Geosphere-Biosphere Program (IGBP).  

 

Approximately 6.3 Gt of carbon is introduced into the atmosphere every year due 

to fossil fuel burning and cement production [Andres et al., 1996].  Because energy 

consumption of developing countries is increasing and the fossil energy production of 

developed nations is expanding, it is assumed that these emissions will continue to be a 

source of carbon to the atmosphere in the coming decades [CDIAC, 2003].  Deforestation 

is estimated to be an additional source of ~ 1.6 Gt C yr –1 [Schimel et al., 1995].  Despite 

these perturbations, the rate of increase of CO2 in the atmosphere is detected to be only 

half the amount that is being emitted each year by the primary source of fossil fuel 

burning [Andres et al., 1996].  The half being removed is taken up by the biosphere and 

dissolved into cold ocean waters [Houghton et al., 2001], while the remaining emissions 

are accumulating in the atmosphere as is evident in the Mauna Loa record.  The terrestrial 

and oceanic sinks that currently account for the emissions uptake vary in strength every 

year, and it is difficult to determine their underlying mechanisms and how they will 

fluctuate in the future according to changes in the earth’s climate [Gruber et al., 1996].   
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Fossil fuel carbon is released predominantly in the northern latitudes by industrial 

nations, and therefore a north-south gradient of 4 – 5 ppm should be evident in 

atmospheric CO2 concentrations.  The observed gradient of 3 ppm implies the existence 

of another “missing” source from the southern hemisphere, or sink in the northern 

hemisphere.  Tans et al. [1990] suggested that it was most likely to be a carbon sink in 

boreal or temperate northern continents.  More recent studies have cast confusion over 

the magnitude and location of this sink, such as the findings of Fan et al. [1998] which 

found that a 1.7 Gt C yr –1 terrestrial carbon sink in North America dominated the 

northern hemisphere between 1988-1992.  In the next year, Bousquet et al. [1999] found 

the biggest sink of 1.5 Gt C yr –1 to be over Northern Asia and a weaker 0.5 Gt C yr –1 

sink over North America.  Studies of this sort regarding the natural source and sink 

activity of carbon, although sometimes contradictory, are imperative for investigating the 

earth’s carbon budget and understanding future trends of global change. 

 

1.3 Research Objective 

 

In 1995 the United Nations’ International Panel on Climate Change (IPCC) 

reported the annual “bottom-up” estimates of terrestrial sink processes and their 

uncertainties [IPCC, 1995].  The overall terrestrial sink is partitioned into four main 

processes that have been identified: forest regrowth, CO2 fertilization, nitrogen 

fertilization, and climate fluctuations.  The annual uptake estimates of each process are 

shown in Table 1. 
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Table 1.   IPCC 1995 estimates of terrestrial carbon sink processes. 

 

 

 

 

 

 

 

 

The net strength of these processes is estimated to be ~ 0.7 Gt C yr –1, with an 

uncertainty that is greater by almost one order of magnitude.  With such a large 

uncertainty, the total estimate value is not very useful.  

 

The current atmospheric carbon budget is constrained by measurements of fluxes 

and concentrations.  Flux measurements are local and act on very short timescales that 

vary in footprint and time making it difficult to assess a regional budget over a multi-year 

or multi-decadal period of time.  These measurements are continually maintained by 

permanent infrastructure as well as field campaigns [Baldocchi, 2003].   

 

The current CO2 concentration observing network is based on weekly flask 

samples from the atmosphere, most of which are taken in remote marine locations.  These 

sites are used because the tropospheric air being sampled is well-mixed and isolated from 

0.7 to 5.0 Total 

0.0 to 1.0 Climate Fluctuations 

0.2 to 1.0 Nitrogen Fertilization 

0.5 to 2.0 CO2 Fertilization 

0.0 to 1.0 Forest Regrowth 

 

Annual Uptake (Gt C yr –1) 
 

Process 
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influences of populated and vegetated areas and thus is sufficient to capture background 

concentrations.  These networks however, are limited by the lack of measurements from 

continental sites and are therefore too sparse to monitor regional fluxes [Masarie et al., 

1995].  This flask-sampling network of ~100 stations, as shown in Figure 2, is currently 

maintained by the Climate Monitoring Diagnostics Laboratory (CMDL) of the National 

Oceanic and Atmospheric Administration (NOAA) in Boulder, Colorado, and has been 

used to infer sources and sinks, e.g. Bousquet et al., 2000 and Gurney et al., 2002, on 

continental and ocean-basin scales. 

 

   

Figure 2.  NOAA/CMDL measurement program for carbon cycle greenhouse gases.  
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The process uncertainties could be reduced with more of these campaigns and 

additional measurements over the continents, but in reality these operations are difficult 

to set in motion, cannot accommodate all political and geographic barriers, and are 

unlikely to achieve the kind of global coverage and constraint that can offer great 

progress in understanding for the next decade. 

 

In 1992, NOAA CMDL began taking measurements from tall television 

transmission towers and found this to be a reasonable way to sample over the continents 

without the problems of boundary layer variability [Bakwin et al., 1995].  The effort to 

establish more continental observing stations is now growing due to evidence that the 

concentration footprint of these tall tower measurements is sufficient for global model 

resolution [Gloor et al., 2001].  

 

Following this need for greater reduction in uncertainty on carbon flux estimates, 

together with the evidence that tall tower measurements are a reasonable way to capture 

regional fluxes on the continents, I investigated whether creating networks of “virtual” 

tall towers, by proxy with shorter flux towers, could accomplish this task to further 

constrain the surface observational network as determined by use in inversions of global 

transport models. 
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CHAPTER  2. BACKGROUND 
 

2.1   Tracer Transport Inversions  

 

Inverse modeling is a useful tool for estimating the strength of surface carbon 

sources and sinks.  In this technique, surface carbon fluxes are estimated from empirical 

observations that incorporate spatial and temporal patterns in the atmosphere.  This 

involves using inverse calculations of atmospheric transport.  A synthesis inversion can 

accomplish this task by using the information from atmospheric observations together 

with a priori flux estimates that are constructed from ground-based observations.  A 

priori fluxes contain “prior” information about the ocean-atmosphere carbon exchange, 

land-atmosphere exchange, and fossil fuel emissions.  Unit emissions are prescribed in 

specific spatial and temporal patterns and scaled by the inversion in space and time 

resulting in “basis functions” [Enting, 2002].  They are scaled to match the measured CO2 

using a backwards or “inverse” calculation.  Sub-regional patterns of fluxes associated 

with each basis function are prescribed as hard constraints, so the inversion is not allowed 

to adjust the emission spatial distribution in this way.  The resulting time-varying mixing 

ratios that arise in the transport model from the basis functions represent the flux field 

and are referred to as “response functions”.  Linear combinations of the response 

functions are used to reconstruct timeseries of CO2 concentrations. 

 



 11 

The inverse method is based upon the idea that the change in tracer concentration 

is due to advection of air parcels in time and sources and sinks that influence those air 

parcels as they are transported over various surface conditions.  This can be illustrated 

simply in time-varying mathematical form by the following equation: 

 

                                              ( ) ( ) CC CV S
t
ρ ρ∂ = −∇⋅ +

∂
r

                    (1) 

 
where  
 
                          C = concentration (observed by measurements) 

                          V =
r

transport (modeled by general circulation models (GCMs)) 

                        CS =carbon sources and sinks (solved for using inverse calculations) 

 

A particular observed concentration is defined as being the product of the transport and 

source of all relevant emissions.  This relationship is defined in the following equation: 

 

                                                  ˆd Gm=
r r                                    (2) 

 

where    
                                             d

r
 = observed concentration data 

                                             Ĝ  = Jacobian matrix of transport operator 
                                             mr  = flux 
 
 

The simulated GCM responses to the fluxes are the same “response functions” 

referred to earlier and are organized into a Jacobian matrix of information that describes 

all types of emissions being considered. 
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In inverse methods, this matrix is commonly referred to as the G matrix (Ĝ).  

Were Equation (2) and its matrices expanded in scalar form, it would appear:  

 

                               

1 2 3 1

1 2 3 2

1

1 1 1 1 1

2 2 2 2 2

3 3 3 32 3 3

1 2 3

3

. .

. .

. .
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. .

M

M

N N

M
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d G G G G m
d G G G G m
d G G G G m
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⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

                   

 
where    
                                   2 21 11 1 1 1...... M Md G m G m G m= + +  
                                   1d =  observed concentration at location 1 
                                  21G =  partial derivative of concentration at location 1  

        with respect to type 2 CO2 emissions  
                                   1m =  emissions of type 1 
 
                                                 
 
If the problem were simple and the G matrix was square, the solution to Equation (2) 

would be easy: 

                                                        1ˆm G d−=
rr                                   (3) 

 
where      

     1Ĝ− = inverse of the G matrix 
 
 

Since this is a very ill-conditioned problem – meaning that there are many more 

unknown variables than equations that can be used to find solutions, we cannot use a 

simple matrix inversion. 1Ĝ− doesn’t exist.  But there is a solution. 

 

To obtain optimal estimates of the regional monthly sources and sinks, mest , we 

use a least-squares technique of defining a cost function, S, which penalizes deviation of 



 13 

the modeled concentrations from the data and deviations of the fluxes from prior 

estimates [Tarantola, 1987].  

 

The cost function is defined in this way: 

 

           
                  1 1ˆ ˆ ˆ ˆ( ) [( ) ( ) ( ) ( )]t t

est est obs d est obs est p m est pS m Gm d C Gm d m m C m m− −= − − + − −
r rr r r r r r r         (4) 

 
 
where 
           
                                                                   Ĝ =  G matrix of response functions 
            estm =r  final flux estimate      
            pm =r  a priori flux estimate                                       

obsd =
r

 observed concentration data                                                                   
1ˆ
dC
− =  data uncertainty  

                                             1ˆ
mC
− =  a priori flux estimate uncertainty 

 
 

The first term on the right-hand side of Equation (4) refers to mismatch between 

the model and the data.  The second term on the right-hand side refers to the deviation of 

inferred fluxes from the priors.  Cd is a covariance matrix of the observational data vector 

dobs .  (Cd is not shown in Equation (4).)  The inverse of Cd, or Cd
-1, is a covariance matrix 

that is constructed with a diagonal of (1/ Cd)2 to give weight, or confidence level, to the 

observational data values.  The diagonal elements are the only non-zero elements in this 

matrix.  Cm (not shown in Equation (4)) is the a priori flux estimate uncertainty 

covariance matrix, and the inverse of Cm, or Cm
-1, is the a priori covariance matrix with a 

diagonal of (1/ Cm)2 to give weight, or confidence level, to the a priori flux estimates.  

Similarly, the non-diagonal elements in this matrix are zero. 
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The equation to solve is:  
 

                                                 0
est

S
m
∂ =
∂ r

    ;   solve for estmr            (5) 

 
 
Following Tarantola [1987], the solution of flux magnitudes ( estmr ) that minimizes the 

cost function is:  

                         
                   1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )t t

est p d m d obs pm m G C G C G C d Gm− − − −= + + −
rr r r                                 (6) 

 
 
where 
 
                                             Ĝ =  G matrix of response functions 
                                            ˆ tG  =  transpose of G matrix 
                       obsd =

r
observed concentration data                                                                    

                                             estm =r  final flux estimate 
                                             pm =r   a priori flux estimate 

                                             1ˆ
dC
− =  data uncertainty  

                                             1ˆ
mC
− =  a priori flux uncertainty  

 
and the term: 
 
                                              * 1 1 1ˆ ˆ ˆ ˆ( )t

m d mC G C G C− − −= +              (7) 
 
 
represents the a posteriori estimate of uncertainty in the fluxes.  Equation (7) does not 

depend on observations per se.  There are no flux or data estimates in this term, only flux 

and data estimate uncertainties.  This is a linear system and thus singular value 

decomposition (SVD) technique was used to find the least-squares solution for these 

large matrices.  
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The a posteriori uncertainty estimate in Equation (7) is an important parameter in 

this research.  The objective is to determine whether networks of virtual tall towers can 

add enough information to be meaningful for constraining the carbon budget, and 

consequently what network is optimal for providing this information.  The a posteriori 

uncertainty estimates are important because they demonstrate how much information has 

been added to the inversion.  Therefore, this term is a focal point as an important measure 

for whether these objectives have been met and I investigated how *
mC changed according 

to inversions of different configurations of modeled virtual tall tower networks.  This 

approach does not offer more information or improve estimates of carbon flux, only 

estimates of uncertainty that are associated with that flux.   

 

2.2  Previous Inversion Studies 

 

Previous inversion studies have produced some intriguing results about carbon 

sources and sinks. Rayner et al. [1999] used Bayesian synthesis inversion to investigate 

the spatial-temporal patterns of CO2 fluxes to the atmosphere during the years 1980-1995 

using measurements of atmospheric concentration and isotopic composition.  Bousquet et 

al. [2000] used an inverse model with 20 years of atmospheric CO2 measurements to 

analyze interannual variations in regional carbon balance of oceans and continents.  They 

determined that tropical ecosystems have contributed the most to yearly changes in the 

carbon budget for the last 20 years.  Both Rayner [1999] and Bousquet [2000] neglected 

interannual variability of atmospheric transport.  More recently, Gurney et al. [2002] 

applied an inverse model to 16 atmospheric tracer transport models to determine regional 
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CO2 sources and sinks.  They found a northern hemisphere land sink and a southern 

extratropical ocean uptake to be weaker than previously estimated.  They also concluded 

that for less problematic errors in inversions, further constraints are needed in the form of 

better transport models and a more extensive tropical CO2 surface observational network. 

More recently, Roedenbeck et al. [2003] investigated the effects of using interannually-

varying transport in global time-dependent inversions for CO2 sources and sinks. 

 

My research project made use of a recent collaboration between atmospheric 

tracer transport modelers, that began in 1993 to determine the effects of different 

transport modeling schemes on inverse surface carbon flux estimations.  The 

Atmospheric Tracer Transport Intercomparison Project – referred to as “Transcom”, was 

a project of the International Geosphere-Biosphere Progamme’s (IGBP) Global Analysis 

Interpretation and Modeling (GAIM) Project.  The experimental protocol prescribed 

background fluxes for fossil fuel emissions, net ecosystem production (NEP) according to 

ecosystem model parameters of net primary production (NPP), and atmosphere-ocean 

exchange [Gurney et al., 2000].  Transcom divided the world into 11 land regions and 11 

ocean regions based loosely on vegetation characteristics derived from Normalized 

Differential Vegetation Index (NDVI) data that are retrieved from an advanced very high 

resolution radiometer (AVHRR) instrument aboard a low Earth orbiting satellite.  The 

partitioning of these 22 regions can be seen in Figure 3.  Regional fluxes from these 

partitions are considered in addition to the prescribed fluxes in order to correct the 

surface flux distribution in the inversion to optimize the gap between the model and 

observed data.  
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Figure 3.  The partitioning of 22 Land and Ocean regions of the Transcom Project.  

(Black dots represent sites in the flask measurement network.) 

 

Twelve different global tracer transport models were used by the Transcom 

modelers to produce CO2 concentration response functions to 264 prescribed unit 

emission pulses – one pulse for each month for each region. In the third phase of the 

Transcom experiment (hereafter referred to as Transcom3), surface-atmosphere CO2 

fluxes were estimated from atmospheric CO2 inversion models.  They showed a 

discrepancy between the predicted Southern Ocean fluxes in this inversion and those 

reported in the global database of CO2 partial pressure (pCO2).  This study estimated 

carbon uptake in the southern extratropics to be about half of that based on the pCO2 

database, and showed that new measurements would be most useful if taken from the 

South American and southern Atlantic Ocean regions, while also sampling the tropical 
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continents [Gurney et al., 2003].  Table 2 shows the models associated with Transcom3 

and their various parameters. 

 

Table 2.  The twelve global tracer transport models used in the Transcom3 inversions.  

 

 

 

 

2.3    Previous Optimization Studies 

 

Simulated annealing (SA) is a common approach to network optimization and 

was used by Rayner et al. [1996] and Gloor et al. [2000] to determine which sampling 

sites would further optimize the CO2 observational network for the purpose of reducing 

uncertainty on estimates of carbon flux.  The SA technique is modeled after the 

simulation of a crystal lattice that reaches minimum energy states while changing phase. 

Using this method, Rayner et al. [1996] concluded that the next single best step to make 

was to take measurements in tropical South America.  
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Noting that SA is computationally expensive and probabilistic, Patra et al. [2002] 

used an algorithm known as Incremental Optimization (IO) to investigate which various 

network configurations most reduced uncertainty of flux estimates through the process of 

adding new station sites one by one.  New individual site selection was based on the level 

of positive flux estimate uncertainty reduction achieved by that specific addition. This 

algorithm is less computationally expensive, more deterministic – resulting in a unique 

solution, more simple to implement, and performs equally well or better than SA.  Using 

this method they were able to reduce total CO2 flux uncertainty estimates by 59%, 47%, 

35%, and 29% with additions of 3, 5, 12, and 20 stations, respectively, as relative to a 

reference network.  Their results indicated that the most poorly constrained regions for 

inverse models were tropical America, South America, tropical Africa and South Africa. 

Their results also emphasized that more CO2 measurements are especially needed over 

the continental areas of Africa, South America, and Asia. 

 

These studies neglected to consider which global grid cells were realistically 

feasible to sample.  Therefore, their results are useful to consider as an academic exercise 

but become moot when trying to implement the deduced strategies in reality. 

 

2.4   Virtual Tall Tower Theory 

 

Based on these previous inversion studies, there is clearly a need for more 

terrestrial measurement stations around the world.  The continental regions suffer most 
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from lack of observations, due to difficulties in measuring where landscape 

heterogeneity, strong vertical gradients, and dynamic diurnal cycles persist.  Tall towers 

try to avoid these difficulties by measuring in the mixed-layer, but they are very 

expensive to implement and maintain [Bakwin et al., 1995], [Davis et al., 2001].  The 

measurements of shorter surface-layer flux towers would be reasonable to use if they 

could be extrapolated to represent mixed-layer CO2 concentrations.  Flux towers that 

currently operate take measurements in the canopy surface layer while the grid cells of 

global circulation models represent measurements from the higher mixed-layer.  In order 

to harmonize real observations and theoretical models there must be a reconciliation 

between these disparate representations. “Virtual” tall towers can be constructed using 

measurements of calibrated [CO2] and fluxes from short towers [Davis et al., 2003], in a 

methodology that is currently being tested at a real tall tower in Wisconsin.  

 

Previous studies in optimization of carbon observing networks considered any 

global grid cell as eligible for selection as a measurement site [Patra et al., 2002], [Gloor 

et al., 2000], [Rayner et al., 1996].  In reality, measurement of mean CO2 over highly 

variable terrestrial regions is very impractical and expensive.  A global network of eddy- 

covariance flux towers already exists in which continuous measurements of CO2 are 

taken, as well as measurements of sensible heat (H) and latent heat (LE), such that net 

ecosystem exchange (NEE) can be estimated.  If the CO2 measurements were calibrated, 

these surface-layer values could be extrapolated to the mixed-layer using similarity 

theory providing a means to sample the continental mixed-layer for use in global 

inversions to further constrain the carbon budget.  With this method for estimating the 
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mid-day continental boundary layer CO2 from calibrated CO2 and eddy-covariance 

measurements at flux towers, a network of virtual tall towers (hereafter referred to as 

VTT) could be readily implemented using existing infrastructure and minimal additional 

instrumentation.  In this way, the ill-conditioning of having a network that is too sparse to 

deduce global fluxes can be overcome.  My research objective is to show that significant 

uncertainty reductions can be achieved for regional and global estimates of carbon flux 

using the virtual tall tower method. 

 

The atmospheric planetary boundary layer (PBL) is dominated by turbulent flow 

and separated by a density inversion from the free atmosphere that is characterized by 

laminar flow.  Air parcels in the boundary layer move over land at approximately 500 

km/day during fair weather conditions [Gloor et al., 2001].  As meteorological processes 

circulate these parcels over different ecosystems, the gaseous composition of the parcels 

is modified by photosynthesis, evapotranspiration, ecosystem respiration, and exchanges 

of sensible and latent heat.  This influence is diluted by synoptic-scale subsidence and 

frontal passages that induce mixing of boundary layer and free tropospheric air.  Thus the 

resulting air masses that reside over the land surface are a result of the initial composition 

of air that was entrained from the free troposphere, the ecosystem processes and surface 

characteristics over which the parcels have passed, and the mesoscale meteorological 

processes that induced mixing during boundary layer development [Baldocchi, 2003]. 

 

Boundary layer air over the continents is richer in CO2 in winter, and poorer in 

summer, than marine boundary layer air because of the effects of soils, vegetation, and 
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fossil fuel combustion.  During summer, photosynthesis induces a drawdown of CO2 and 

during winter when plants are dormant the ecosystems serve as a source of carbon to the 

boundary layer.  The following schematic is a simple height cross-section showing the 

variable concentration of CO2 during a well-mixed convective afternoon in the growing 

season.  

 

 

                                                                                                             

                                                                                                              

                                                        entrainment zone (zi)  

 

                                                  

                                                                                                                    

            

Figure 4.  A simple schematic of surface [CO2] varying with boundary-layer height. 

 

The figure is not drawn to scale, but indicates general trends of the continental 

boundary layer that is characterized by diurnal cycles and steep vertical gradients which 

large scale models cannot resolve.  Near the surface, the concentration of CO2 is the 

highest because the eddies are so small that soil respiration cannot be mixed into the 
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higher canopy air.  As carbon travels higher in the canopy and farther from the surface it 

experiences more mixing by turbulent eddies.   

 

This methodology has been tested and refined at the WLEF tall tower in 

northwest Wisconsin, where continuous CO2 concentration data have been collected 

since 1995 from heights of 30 m and 396 m above the surface [Davis et al, 2001].  The 

tower is a 447 m television transmission tower located in an unpopulated area of 

temperate forest.  This site participates in an association with similar flux tower sites in 

North America called “Ameriflux” [http://public.ornl.gov/ameriflux].  Currently all 

Ameriflux sites take measurements of CO2 mixing ratios in order to calculate eddy-

covariance fluxes of water vapor, sensible heat, and CO2.  However, there is minimal 

effort to maintain long-term precision and absolute accuracy for [CO2].  Currently [CO2] 

is measured at a frequency of 5-10 Hz at every flux tower, but there is no calibration to 

primary gas standards and thus the precision can vary by 1-10 ppm, and in a small 

number of cases – up to 100 ppm [Julie Styles, personal communication].  This level of 

uncertainty is unacceptable because it would produce large errors in retrieved fluxes 

when propagated through an inversion.   

 

Figure 5 shows a depiction of one month of data from September 1997 at the 

WLEF tower.  In the top panel, the data show that the [CO2] measurements at 30 m are 

able to track the synoptic variability observed at 396 m, which varies by ~ 35 ppm during 

the month.  The temperature record clarifies the presence of fronts that correspond to the 

synoptic pattern.  
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Figure 5.  WLEF tower measurements and correction estimates. 

     Figure courtesy of Dan Ricciuto and Ken Davis 

 

In the bottom panel, turbulent mixing and vertical gradients have been estimated 

using sensible heat flux and momentum stress measurements, and the predicted [CO2] is 

compared to the observed [CO2] at 396 m.  When the VTT correction does not accurately 

predict the 396 m measurements, there is a tendency for under-predicting.  This analysis 

shows a bias of 0.2 ppm and a variance of 0.2 ppm, which is low enough in the context of 

the flux that is trying to be captured, and for what is needed in the scope of inversion 

modeling, to be reasonable for use in global models.  By using the monthly means of 

these data, it is also likely that there is less representation error than the weekly flask 
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temperature 
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measurements.  Another advantage is that the root mean square (rms) error of the 

monthly mean observations is comparable to analytical error under good conditions. 

Analytical (or instrument) error is the lowest error that can be achieved in observational 

data.  

 

The defining equation using mixed-layer similarity theory for this method 

describes the change in concentration with height as being the result of the entrainment 

flux subtracted from the surface flux [Moeng, 1984], and is described as follows: 

 

                                          Mixed-Layer Similarity Theory 
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⎛ ⎞ ⎛ ⎞∂ = − −⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠                                           (8) 

 

where 

C = scalar mixing ratio [CO2] 

F0
C, Fzi

C = surface and entrainment fluxes 

z = altitude above ground or displacement height 

zi = depth of convective boundary layer 

w* = convective velocity scale (a function of surface buoyancy flux and zi) 

gb, gt = dimensionless gradient functions, which depend on normalized altitude within  

             the convective layer. 

 

Similarity theory is based on organizing variables into dimensionless groups that 

have empirical relationships to each other as defined in an equation.  This theory does not 
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tell the form of the equation or the relationship between the dimensionless groups, so 

physical insight is used to inform the technique.  These relationships are usually applied 

to situations where steady-state is implied, and thus time is not included as a variable. 

Rather the variables are used to yield equilibrium profiles of mean variables and 

turbulence statistics as a function of height or position [Stull, 1994].  In this case, 

boundary layer height is variable with time and fluxes are measured by eddy covariance.  

The mixed-layer [CO2] is then calculated using gradient functions derived from eddy 

simulations.  

 

 The virtual tall tower theory asserts that 400 m observations can be simulated 

with 30 m measurements using mixed-layer similarity theory to estimate the surface 

gradient  [Davis, 2003].  This is done using surface-layer flux and mixing ratio data that 

infers the CO2 mixing ratio in the mixed layer.  This gradient can be estimated during 

mid-day convective conditions accurately enough to simulate 400 m observations for use 

in global inverse models.  The VTT method is believed to work best in the mid-afternoon 

because the gradient is less steep and easier to estimate than it would be at night while 

experiencing the surface stable layer and nocturnal tropospheric jet [Davis et al., 2003]. 

 

Ameriflux is part of a greater worldwide network of monitoring stations referred 

to as FLUXNET (Figure 6).  This represents a global network of process observatories 

all currently using eddy covariance to estimate sensible heat (H), latent heat (LE), and net 

ecosystem exchange (NEE) [Ameriflux, 2003]. 
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Figure 6.  The FLUXNET network of global flux measurement sites. 

 

Each of these sites is also collecting uncalibrated continuous CO2 concentration 

data, as are Ameriflux sites.  If these data could be used in inverse models, the number of 

[CO2] measurement sites would more than double and in fact be quite dense over some 

continental areas.  With implementation of an additional trace gas sensor, calibration 

gases, and some technical expertise, accurate [CO2] measurements can be taken using 

existing infrastructure and be readily available for use in VTT methodology [Ken Davis, 

personal communication]. 

 

The purpose of this study is to investigate to what degree incorporating precise 

virtual tall tower [CO2] data into global inverse models would reduce global and regional 

estimates of carbon fluxes, and to determine if this would further constrain the 

continental regions that currently persist as a problem to global optimization. 
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CHAPTER  3. METHODS 
 

3.1 Introduction 

 

I used twelve tracer transport models from Transcom3 to do inversions of regional 

and global virtual tall tower networks, as created from selections of mid-afternoon 

measurments in high-frequency timeseries data saved from the forward runs of these 

same models.  At first, I created these networks by hand based on heuristic judgments 

about strategies that might work for capturing the continental carbon flux for North 

America.  I tested many of these networks in the inversions and compared them to each 

other to gain an understanding of which strategies were most efficient in reducing 

uncertainty.  Then I used a deterministic genetic algorithm to find a specific network 

solution for both the North America and global inversions.   

 

The cyclostationary inversion code used is a general Bayesian time-dependent 

inverse solver that operates on input data of trace gas records in terms of a series of 

pulsed sources with predetermined spatial structure.  The inversion is described as being 

“cyclostationary” because of the periodically varying or quasi-stationary nature of the 

seasonal cycle of CO2 about an annual mean.  The input data are the Green’s function 

responses for each source, where the Green’s functions have been pre-calculated by 

inserting pulses of that source into an atmospheric transport model.  Also included in the 
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input data is a series of prior estimates for the time histories of each source and 

covariances for these estimates.   

 

The actual CO2 fluxes are transported by the circulating atmosphere and then 

influence concentrations in time and space.  By the time these concentrations are detected 

with empirical networks there has already been an attenuation of information.  Timeseries 

are made from observations of the concentrations, which are then used in an inverted 

transport model to estimate the original sources and sinks.  During this inverse process to 

estimate the sources, the errors are amplified.  Thus, large errors that exist before the 

inversion will become a problem and the process will not provide a meaningful solution. 

 

The flux observations were prescribed as a weak constraint with estimated 

uncertainties.  How far the fluxes can deviate from this information is controlled, and 

solutions that produce unreasonable values were penalized.  Each of these constraints was 

weighted with uncertainties that determine the magnitude of their contribution to 

minimizing the cost function (see chapter 1). 

 

In the inversion setup for my experiments there are 269 basis functions (see 

chapter 1), which are constructed as:  

  
     264 initial basis functions (= regions [22] x months [12]) 
       + 4 background fluxes (pre-subtracted fields)  
       + 1 background offset (global mass-balance constraint) 
                      --------------------------------------  
    =  269 total basis functions  
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The background fluxes are referred to as pre-subtracted fields, or “pre-subtracts”, 

because the modeled concentration responses corresponding to these prior background 

fluxes are subtracted from the monthly concentrations before the inversion is performed.  

The inversion acts only on the residual concentrations.  They consist of four a priori 

fields of seasonal terrestrial biosphere exchange, ocean-atmosphere gas exchange, and 

two fossil fuel emission fields.  The seasonal terrestrial biosphere exchange, or net 

ecosystem production (NEP), is derived from the Carnegie Ames Stanford Approach 

(CASA) ecosystem model [Randerson et al., 1997] and is annually balanced for a zero 

net flux in every grid cell.  The monthly mean global air-sea exchange is prescribed with 

seasonal variation and an annual oceanic uptake of 2.19 Gt C yr –1 from measurements of 

partial pressure differences (∆pCO2) by Takahashi et al. [1999].  The fossil fuel emission 

fields are annual mean sources (no seasonality) that are derived from 1990 [Andres et al., 

1996] and 1995 [Brenkert et al., 1998] data records and total 5.812 Gt C yr –1, and 6.173 

Gt C yr –1, respectively.  Flux estimate uncertainties were calculated for every month of 

the year for every region, totaling 264 uncertainty values associated with the 264 initial 

basis functions.  The basis functions were scaled to match the measured CO2 using a 

backwards or “inverse” calculation. 

 

Using this technique, monthly mean estimates of regional fluxes and uncertainties 

were generated using Equation (7) across the 1992-1996 time period for the same set of 

stations used in the Transcom1 annual mean inversion plus additional tower sites that are 

assigned fictional observations and uncertainties.  

 



 31 

 Mid-day sampling of the high-frequency timeseries global fields generated by 

forward runs of the transport models was done by sampling from the hour closest to 2 pm 

local time.  These samples were then turned into monthly mean response functions 

before the inversion.  From all three years of high-frequency model output, the 

concentration response that corresponded to mid-day at each station was selected for the 

purpose of sampling in the mid-afternoon only, when VTT theory works best.  Then each 

daily sample was averaged to obtain a monthly mean, mid-day, mid-PBL value. 

 
 The 245 station list is composed of the 228 Transcom3 Level 2 control stations 

and the additional 17 Pacific Ocean stations, and follows in Table 3 (Gurney et al., 

2000).  This list includes the 75 flask stations. 

 

Table 3.  The 245 station list used in the Transcom3 Level 2 experiment.  

Station latitude longitude elev (m) type11 type22 Direction NS 
GLOBALVIEW3 
Bass Strait/Cape Grim -40.38 144.39 500 a O SW NS 
Bass Strait/Cape Grim -40.38  144.39 1500 a O SW NS 
Bass Strait/Cape Grim -40.38  144.39 2500  a O SW NS 
Bass Strait/Cape Grim -40.38  144.39 3500  a O SW NS 
Bass Strait/Cape Grim -40.38  144.39 4500  a O SW NS 
Bass Strait/Cape Grim -40.38  144.39 5500  a O SW NS 
Bass Strait/Cape Grim -40.38  144.39 6500  a O SW NS 
Alert, Greenland 82.45  -62.52 210 u O SW 
Amsterdam Island -37.95   77.53 150 f O 
Ascension Island -7.92  -14.42 54 f O 
Assekrem, Algeria 23.18    5.42 2728 f L  NS 
St. Croix, Virgin Is.  17.75  -64.75 3 f O 
Azores 38.75  -27.08 30 f O 
Baltic Sea, Poland  55.50   16.67 7 f O 
Baring Head St., NZ -41.41  174.87 80 u O S,SW 
Bermuda West 32.27  -64.88 30 f O 
Barrow, Alaska 71.32 -156.60 11 u O E,NE 
Black Sea, Romania  44.17   28.68 3 u O NE 
Carr, CO 40.90 -104.80 3000 a L  NS 
Carr, CO 40.90 -104.80 4000 a L  NS 
Carr, CO 40.90 -104.80 5000 a L  NS 
Carr, CO 40.90 -104.80 6000 a L  NS 
Cold Bay, Alaska 55.20 -162.72 25 f O 

                                                
1 "a" - aircraft, "u" - continuous analyzer, "f" - flask, "t" - tower. 
2 "O" = ocean, "L" - land. 
3 The Pacific Ocean ship measurements were eliminated from the high-frequency reporting because it is unlikely they 

would differ much from the monthly means which are reported for every gridcell. 
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Cape Ferguson, Aust. -19.28  147.06 2 u O E 
Cape Grim, Tasmania -40.68  144.68 94 u O SW 
Christmas Island 1.70 -157.17 3 f O 
Mt. Cimone St., Italy  44.18   10.70 2165 f L  NS 
Cape Meares, OR 45.48 -123.97 30 u O W,NW 
Cape Rama, India 15.08   73.83 60 u O S,SE 
Crozet, Indian Ocean -46.45   51.85 120 f O 
Cape St. James, Canada  51.93 -131.02 89 u O W 
Darwin, Australia -12.42  130.57 3 u O W,NW 
Easter Island -29.15 -109.43 50 f O 
Estevan Pt, BC, Canada  49.38 -126.55 39 u O W 
Guam 13.43  144.78 2 f O 
Dwejra Pt., Malta 36.05   14.18 30 f O 
Halley Bay, Antarctica -75.67  -25.50 10 f 
Hungary 46.95   16.65 300 t L 
Storhofdi, Iceland  63.25  -20.15 100 f O 
North Carolina 35.35  -77.38 60 t L 
North Carolina 35.35  -77.38 500 t L  NS 
Canary Islands 28.30  -16.48 2360 f O  NS 
Jubany St., Antarctica -62.23  -58.82 15 f 
Key Biscayne, FL 25.67  -80.20 3 u O S 
Kosan, Rep. of Korea  33.28  126.15 72 u O 
Kumukahi, Hawaii 19.52 -154.82 3 f O 
Wisconsin tower 45.93  -90.27 500 t L  NS 
Wisconsin tower 45.93  -90.27 850 t L  NS 
Lampedusa, Italy 35.52   12.62 85 f O 
Mawson St., Antarctica -67.62   62.87 32 f 
Mould Bay, Canada 76.25 -119.35 58 f O 
Sand Island, Midway 28.22 -177.37 4 f O 
Mauna Loa, Hawaii 19.53 -155.58 3397 f O  NS 
Minamitorishima, Japan 24.30  153.97 8 f O 
Macquarie Island -54.48  158.97 12 f O 
Olympic Peninsula, WA  48.25 -124.42 488 u O W 
Plateau Rosa St., Italy 45.93    7.70 3480 f L  NS 
Palmer St., Antarctica -64.92  -64.00 10 f 
Qinghai Province, PRC 36.27  100.92 3810 f L  NS 
Ragged Pt., Barbados 13.17  -59.43 3 f O 
Ryori St., Japan 39.03  141.83 230 u O E 
Schauinsland, Germany 48.00    8.00 1205 f L  NS 
South China Sea 3.00  105.00 15 f O 
South China Sea 6.00  107.00 15 f O 
South China Sea 9.00  109.00 15 f O 
South China Sea 12.00  111.00 15 f O 
South China Sea 15.00  113.00 15 f O 
South China Sea 18.00  115.00 15 f O 
South China Sea 21.00  117.00 15 f O 
Sable Island, NS, Can. 43.93  -60.02 5 u O E 
Mahe Island, Seychelles -4.67   55.17 3 f O 
Shemya Island, Alaska 52.72  174.10 40 f O 
Shetland Is., Scotland 60.17   -1.17 30 f O 
Samoa -14.25 -170.57 42 f O 
South Pole -89.98  -24.80 2830 f 
Atlantic Ocean, Norway  66.00    2.00 7 f O 
Pacific Ocean, Canada  50.00 -145.00 7 f O 
Syowa, St., Antarctica -69.00   39.58 11 f 
Tae-ahn Pen., Korea  36.73  126.13 20 u O 
Wendover, Utah 39.90 -113.72 1320 f L 
Ulaan Uul, Mongolia  44.45  111.10 914 f L 
Westerland, North Sea  55.00    8.00 8 u O W 
Sede Boker, Israel  31.13   34.88 400 u O NW 
Zeppelin St., Norway  78.90   11.88 474 f O 
FLUX TOWERS 
amer.ca01flan.01 49.60 -112.60 951 t L 
amer.ca01roul.01 45.41  -75.52 -999 t L 
amer.ca02vanc.01 49.85 -125.32 300  t L 
amer.ca03born.01 55.90  -98.50 259  t L 
amer.ca08cmpb.01 44.32  -79.93 120  t L 
amer.ca11sbor.05 53.90 -104.70 579  t L 
amer.cs00lase.01 10.43  -83.98 200  t L 
amer.usakhapp.01 69.13 -148.83 366  t L 
amer.usakupad.01 70.27 -148.88 3  t L 
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amer.uscajasp.01 37.40 -122.22 100  t L 
amer.uscaskyo.01 33.37 -116.62 1420  t L 
amer.usflcypr.01 29.73  -82.08 50  t L 
amer.usilbond.01 40.00  -88.29 213  t L 
amer.uskskonz.01 39.12  -94.35 324  t L 
amer.usmaharv.01 42.54  -72.18 300  t L 
amer.usmdsmit.01 38.88  -76.55 11  t L 
amer.usmehowl.01 45.25  -68.75 60  t L 
amer.usmiumbs.01 45.58  -84.70 234  t L 
amer.usncduke.01 35.87  -79.98 163  t L 
amer.usokliww.01 34.96  -97.98 -999 t L 
amer.usorjunp.01 44.27 -121.38 945  t L 
amer.ustnwalk.01 35.95  -84.28 365  t L 
amer.uswawind.01 45.82 -121.97 355  t L 
amer.uswipark.01 45.92  -90.27 470  t L 
aust.as00warr.01 -19.93  134.60 336  t L 
euro.be00bras.01 51.30    4.52 10  t L 
euro.be00viel.01 50.30    6.00 450  t L 
euro.da00lill.01 55.49   11.65 40  t L 
euro.fi00hyyt.01 61.85   24.28 181  t L 
euro.fr00brdx.01 44.08    0.08 60  t L 
euro.fr00sarr.01 48.67    7.08 300  t L 
euro.gm00bayr.01 50.15   11.87 780  t L 
euro.gm00thar.01 50.97   13.63 380  t L 
euro.it00cast.01 41.75   12.37 3  t L 
euro.it00coll.01 41.87   13.63 1550  t L 
euro.nl03wist.01 52.17    5.74 25  t L 
euro.sw00flak.01 64.12   19.45 225  t L 
euro.sw00noru.01 60.08   17.47 45  t L 
euro.uk00aber.01 56.62   -3.80 340  t L 
flux.br00sugr.01 -21.10  -48.07 520  t L 
flux.gm00soll.01 57.77    9.58 505  t L 
flux.it00reno.01 46.59   11.43 1750  t L 
flux.ja00toma.01 42.59  141.59 75  t L 
flux.th27sakr.01 14.49  101.92 530  t L 
flux.th50mark.01 14.59   98.86 170  t L 
jpan.ja00jawa.01 35.90 139.50 30  t L 
jpan.ja00tsuk.01 36.02  140.12 20  t L 
jpan.ja09taka.01 36.13  137.42 1420  t L 
lbaf.br00biol.01 -2.59  -60.12 90  t L 
mede.fr00berb.01 43.73    3.58 250  t L 
mede.gr00gree.01 38.00   22.62 840  t L 
mede.it14sard.01 40.60    8.15 74  t L 
mede.po00jarv.01 38.63   -8.60 230  t L 
mede.sp00unkn.01 38.77    0.25 -999 t L 
ALEGAGE 
Adrigole, Ireland  52.00  -10.00 50 u O SW 
Fraserdale,Ontario, Can. 49.88  -81.57 210 f L 
Kitt Peak, AZ 31.90 -111.60 2090 f L  NS 
Lauder, NZ -45.00  169.70 370 u O S 
Neumayer, Antarctica -71.60   -8.30 16 f 
Scripps Pier, CA 32.83 -117.27 14 u O W 
Table Mtn., CA 34.40 -117.70 2258 f L  NS 
Trinidad Head, CA  41.05 -124.15 109 u O W 
AIRCRAFT 
Tokyo-Syd aircraft  30.00  145.00 10500 a O  NS 
Tokyo-Syd aircraft  25.00  145.00 10500 a O  NS 
Tokyo-Syd aircraft  20.00  145.00 10500 a O  NS 
Tokyo-Syd aircraft  15.00  145.00 10500 a O  NS 
Tokyo-Syd aircraft  10.00  145.00 10500 a O  NS 
Tokyo-Syd aircraft   5.00  145.00 10500 a O  NS 
Tokyo-Syd aircraft   0.00  145.00 10500 a O  NS 
Tokyo-Syd aircraft  -5.00  145.00 10500 a O  NS 
Tokyo-Syd aircraft -10.00  145.00 10500 a O  NS 
Tokyo-Syd aircraft -15.00  145.00 10500 a O  NS 
Tokyo-Syd aircraft -20.00  145.00 10500 a L  NS 
Tokyo-Syd aircraft -25.00  145.00 10500 a L  NS 
Tokyo-Syd aircraft -30.00  145.00 10500 a L  NS 
Fyodorovskoye 56.00   33.00 500 a L  NS 
Fyodorovskoye 56.00   33.00 1500  a L  NS 
Fyodorovskoye 56.00   33.00 2500  a L  NS 
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Fyodorovskoye 56.00   33.00 3500  a L  NS 
Fyodorovskoye 56.00   33.00 5000  a L  NS 
Syktyvkar 62.00   51.00 500  a L  NS 
Syktyvkar 62.00   51.00 1500  a L  NS 
Syktyvkar 62.00   51.00 2500  a L  NS 
Syktyvkar 62.00   51.00 3500  a L  NS 
Syktyvkar 62.00   51.00 5000  a L  NS 
Zotino 60.00   89.00 500  a L  NS 
Zotino 60.00   89.00 1500  a L  NS 
Zotino 60.00   89.00 2500  a L  NS 
Zotino 60.00   89.00 3500  a L  NS 
Zotino 60.00   89.00 5000  a L  NS 
Surgut 61.00   73.00 500  a L  NS 
Surgut 61.00   73.00 1500  a L  NS 
Surgut 61.00   73.00 2500  a L  NS 
Surgut 61.00   73.00 3500  a L  NS 
Surgut 61.00   73.00 5000  a L  NS 
Norilsk 69.00   88.00 500  a L  NS 
Norilsk 69.00   88.00 1500  a L  NS 
Norilsk 69.00   88.00 2500  a L  NS 
Norilsk 69.00   88.00 3500  a L  NS 
Norilsk 69.00   88.00 5000  a L  NS 
Kirensk 58.00  108.00 500  a L  NS 
Kirensk 58.00  108.00 1500  a L  NS 
Kirensk  58.00  108.00 2500  a L  NS 
Kirensk  58.00  108.00 3500  a L  NS 
Kirensk  58.00  108.00 5000  a L  NS 
Kalahari  -21.00   23.00 500  a L  NS 

Kalahari  -21.00   23.00 1500  a L  NS 
Kalahari  -21.00   23.00 2500  a L  NS 
Kalahari  -21.00   23.00 3500  a L  NS 
Kalahari  -21.00   23.00 5000  a L  NS 
Hatanga  72.00  102.00 500  a L  NS 
Hatanga  72.00  102.00 1500  a L  NS 
Hatanga  72.00  102.00 2500  a L  NS 
Hatanga  72.00  102.00 3500  a L  NS 
Hatanga  72.00  102.00 5000  a L  NS 
LBA-Santarem -3.00 -55.00 500  a L  NS 
LBA-Santarem -3.00 -55.00 1000  a L  NS 
LBA-Santarem -3.00 -55.00 1500  a L  NS 
LBA-Santarem -3.00 -55.00 2000  a L  NS 
LBA-Santarem -3.00 -55.00 2500  a L  NS 
LBA-Santarem -3.00 -55.00 3000  a L  NS 
LBA-Belem 0.00 -47.00 500  a L  NS 
LBA-Belem 0.00 -47.00 1000  a L  NS 
LBA-Belem 0.00 -47.00 1500  a L  NS 
LBA-Belem 0.00 -47.00 2000  a L  NS 
LBA-Belem 0.00 -47.00 2500  a L  NS 
LBA-Belem 0.00 -47.00 3000  a L  NS 
Hypo-Africa 2.00   20.00 500  a L  NS 
Hypo-Africa 2.00   20.00 1500  a L  NS 
Hypo-Africa 2.00   20.00 2500  a L  NS 
Hypo-Africa 2.00   20.00 3500  a L  NS 
Hypo-Africa 2.00   20.00 5000  a L  NS 
Hypo-Africa 2.00   20.00 8000  a L  NS 
Hypo-Africa 2.00   20.00 12000  a L  NS 
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3.2     Genetic Algorithms  

 

In a second approach, I used an optimization technique known as a “genetic 

algorithm” to determine which combination of measurement sites in a given regional or 

global domain produced the lowest average posterior flux uncertainty from inversions of 

twelve transport models.  I define an “individual”, or genome, as a combination of unique 

CO2 sampling locations that can possibly be virtual tall tower sites as selected from the 

existing list of flux towers at which Transcom3 saved high-frequency responses.  Each 

new virtual tall tower is a “gene”.  Populations of 100 individuals, or virtual tall tower 

networks, compete to produce the network most robust for reducing carbon flux 

uncertainty.  All networks include the 75 global flask sites and the 4 existing virtual tall 

tower sites in North America.  The genetic algorithm seeks to determine which five or ten 

additional sites, when combined with the flasks and existing towers, provide the optimal 

network. 

 

In summary: 

   gene = virtual tall tower 

   genome = a unique network of virtual tall towers  

   population = a group of virtual tall tower networks 

 

In an evolutionary context, the question would be – “Which genome, or unique 

combination of genes, is most fit to survive and out-compete in this specific 

environment?”  The relevant question in this research context is then – “Which network, 
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or unique combination of virtual tall towers, is most optimal for producing the greatest 

flux uncertainty reduction in atmospheric inversions?” 

 

Understanding the technical aspects of this technique can be helpful to 

recognizing its value as a tool for scientific research.  Genetic algorithms (GA) are used 

in computational optimization schemes in which machine learning can mimic the 

evolutionary process in nature of natural selection [Goldberg, 1989].  Natural systems 

show remarkable efficiency in self-repair, adaptation, and reproduction, and are a 

valuable resource after which to model optimization techniques.  In an artificial setting, 

the user controls the environment in which the individual evolves.  A measure of fitness 

is ‘robustness’, which is understood to be the balance between efficiency and efficacy 

that is necessary for survival in many different environments.  The GA scheme is not a 

random search for a solution to the problem, where the solution is a highly ‘fit’ 

individual.  Stochastic processes are incorporated in the algorithm, but the result is 

distinctly non-random.  In the first generation, the algorithm operates on a population of 

randomly generated individuals, or station lists.  In the second and every subsequent 

generation, the algorithm uses the fitness measure to score a population and thereby 

improve the next.   

 

The main processing power in genetic algorithms comes from the combination of 

reproduction according to fitness and crossover.  High performing networks are 

repeatedly tested and exchanged during the search for better performance.  There are four 

main mechanisms that the algorithm uses in its process of optimization: cross-over, 
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mutation, culling, and refilling.  Cross-over probability is the probability that two 

genomes will be combined.  It determines whether the randomly paired genomes remain 

unchanged or are recombined element by element.  The birth of the offspring creates the 

death of the parents.  The children replace the parents and continue the process.  

Crossover is a structured yet randomized information exchange. 

 

The mutation rate is the probability that a specific gene (station) will be changed.  

Mutation assures that the optimization considers a broad section of the station space, and 

prevents convergence or a local minimum.  Every element for all the lists experiences 

random variation through the mutation process, so the mutation rate is often very low.  

For example, a 0.01% mutation rate implies a 0.5 % mutation rate for a 50 station list.  

The minimum value of the solution is sought, but every possible combination of networks 

is not considered due to the extensive computational time required to perform such a task.  

So the solution might turn out to be a local minimum until a mutation is introduced that 

sets the search domain off course enough to find other non-local minimums.  The role of 

the mutation operator is necessary because the processes of reproduction and cross-over 

during search and recombination, occasionally lose some potentially useful genetic 

material, and the mutation operator protects against this loss [Goldberg, 1989].  It insures 

against the premature loss of important information.  Mutation rates are small in natural 

biological populations and therefore we can assume that mutation is a secondary 

mechanism of adaptation and we assign it to be similarly small.  According to Goldberg 

[1989], in order to obtain good results for empirical genetic algorithm studies the 

frequency of mutation should be prescribed to be on the order of one mutation per 
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thousand bit (population) transfers.  The process of culling involves the scoring and 

ranking of a population.  The genome (station list) is then assigned a survival probability 

based on the resulting reduction of uncertainty in regional fluxes determined by the 

inversion.  Then a random number comparison decides the fate of the genome.  The 

process of refilling is necessary after culling.  Survivors replace culled members and in 

this way the best station combinations multiply. 

 

There are other genetic operators and reproductive plans for computational 

evolution that mimic biology, but these three operators – reproduction, cross-over, and 

mutation, have been proven to be computationally simple and effective in addressing 

many optimization problems.  

 

The genetic algorithm used aggregated uncertainty in estimated monthly regional 

fluxes as a metric to sift through the combinations of stations that create the network 

which performs best.  No station was allowed to be selected more than once for the same 

network.  The metric used was the average root mean square uncertainty for the 12 

models, divided by an assumed four or 12 degrees of freedom in the seasonal cycle due 

to temporal autocorrelation for the global and regional experiments, respectively. 

 

For the regional optimization experiment, the following GA metric was used: 

                                    

                                                  
12

12/])[( 2errorsum
                                                     (5) 
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For the global optimization experiment, the following GA metric was used:  

 

                                                   
2[( ) ] 264

4
sum error

                                                   (6) 

 

The “error” in Equations (5) and (6) is constructed from the trace of Cm* (see 

section 2.1), that doesn’t include the off-diagonal zero elements of the error covariance 

matrix.  (The “trace” of a matrix is the sum of the squares of the diagonal elements.)  A 

Simple Somewhat Generalized Genetic Algorithm programming code was used for this 

optimization, as written by Stefan Kamphausen [2001].  

(http://www.skamphausen.de/software)  I specified population size and other parameters 

for these experiments (Table 4) based on the number of virtual tall towers eligible to 

compete, the realistic size of a possible future network, computational efficiency, and 

discussion of previous GA methods for optimization.  [Peter Rayner, personal 

communication]. 

 

Table 4.  Genetic algorithm parameters. 

 

        GA Parameter           Regional Optimization    Global Optimization 
   
         Population size    100   100   
 
         Genome length    5   10    
 
         Mutation rate    0.01   0.01    
 

Cross-over probability   0.30   0.30   
   

Generations (Iterations)   100   100   
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3.3    Experiment 1:  Regional Network Optimization  

 

The flask network currently estimates the temperate North America flux 

uncertainty at ~ 0.4 Gt C yr –1.  I investigated how the temperate North American flux 

uncertainty could be reduced through additions of various combinations of virtual tall 

towers.  Fisrt I tested the sensitivity of the uncertainty reductions in annual mean carbon 

flux estimates to different levels of representation error.  I define “representation error” as 

representing the expected mismatch between the data and the model due to heterogeneity, 

unsampled variance of [CO2], instrument error, etc, or how well the difference between 

the observational data and the model in the inversion can be minimized.   

 

The map shown in Figure 7 depicts the locations of towers that were currently 

operating during the Transcom3 experiment and thus available for this exercise.  Since 

then many more towers have been added to the network and an updated version of this 

map can be seen on the Ameriflux website, found online at 

http://public.ornl.gov/ameriflux/Participants/Sites/index.cfm.   

 

Existing continuous calibrated [CO2] measurements are located in Massachusetts, 

Wisconsin, Texas, Oklahoma, and Saskatchewan, Canada.  The site in Texas is a new site 

and now operational, but data from this tower were not available during the Transcom3 

Level 2 experiment and therefore high-frequency timeseries were not saved for that 

location and made available for the inversions.  For this reason, only four of the five 
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existing [CO2] measurement locations shown in the map were used in this experiment.  

All inversions include the 75 flasks. 

                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Flux tower sites in the Ameriflux network that were eligible for, or already 
active as, tall tower sites and were saved as high-frequency timeseries from the forward 
runs of the 12 transport models.  (See Appendix II for site names and locations.) 
 

 

A G matrix was created for each model for every month and the flux estimate 

errors generated using the Jacobian matrices from the 12 transport models from the 

Transcom3 experiment were used.  The mean of the variance of the monthly flux 

estimates for each model was annualized to obtain an overall estimate of model-mean 

uncertainty in the annual mean flux from each region.  First I added four sites to the flask 

• Existing Tower [CO2] measurements 

• Possible Tower [CO2] measurements 
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network that already existed as real tall towers or were being calibrated and therefore 

already qualified as eligible virtual tall towers.  Then I added five new tower sites in 

addition to the 4 existing towers, and then all 24 of the eligible Ameriflux towers.  I 

tested these networks through inversions of the 12 models from Transcom3 while 

propagating fifteen different levels of representation error ranging from 0.1 to 20 ppm 

and ramped to cover different ranges and increments (Table 5).   

 

Table 5.  Increments of representation error used in the sensitivity experiment. 

  

             Level 1 — 0.1 ppm Level 6 — 1.0 ppm Level 11 — 5.0 ppm 
                            Level 2 — 0.2 ppm Level 7 — 1.5 ppm Level 12 — 7.0 ppm 

Level 3 — 0.4 ppm Level 8 — 2.0 ppm Level 13 — 10.0 ppm 
Level 4 — 0.6 ppm Level 9 — 2.5 ppm  Level 14 — 15.0 ppm 
Level 5 — 0.8 ppm Level 10 – 3.0 ppm Level 15 — 20.0 ppm 

 

 

Then I performed many inversions of five-VTT tower networks that I chose by hand, 

experimenting with configurations of stations situated in regional clusters, latitudinal 

bands, coastal transects, and various combinations.  (In every case, the experimental 

grouping of five virtual tall towers was in addition to the flask network and four existing 

towers.)  Inversions using these groups were all performed with a constant representation 

error lever of 2 ppm.  For these calculations the flux uncertainty was defined: 

 

                   
4
_ errorRMS                                                     (10)                                                            
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After an initial rudimentary comparison of the uncertainty reductions of about 100 

of these hand-picked networks, I then used the genetic algorithm to explicitly determine 

which network best minimized the uncertainties for the model mean estimates of 

annualized flux for temperate North America in the inversions.  Networks of five towers 

were allowed to compete in populations of 100 networks according to the parameters 

described in Section 3.2. 

 

 
3.4 Experiment 2:  Global Network Optimization 
 

For the second experiment a global network optimization was performed.  As in 

the regional optimization, the field of global flux tower sites that were considered to be 

eligible to use as possible virtual tall tower sites came from the high-frequency timeseries 

saved in Transcom3.  Figure 8 shows the locations of the stations that were used as 

individual genes for the genetic algorithm.  The stations that currently produce calibrated 

CO2 concentration data are indicated in purple and correspond to the same sites from the 

previous regional set-up. Existing stations that are available for the genetic algorithm to 

use are shown in red.  It should be noted that there are many more existing flux tower 

stations to choose from than are shown in the map.  The map indicates that the continents 

of Africa and most of Asia are devoid of any measurements.  Currently, this is not true 

anymore as several campaigns have established a few observational sites in these areas.  

However, these continents still remain as some of the most underconstrained areas of the 

world as well as some of the most problematic for making measurements.  They can 
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benefit the most from a greater density of observations as well as simple implementation 

strategies.  

 

 

 

 

 

 

 

 

 

 

Figure 8.  The global network of flux towers considered eligible as virtual tall towers. 

(Included are the five existing tall tower sites (purple)). 

 

 

 The genetic algorithm was initiated with a random population of 100 

networks of ten global towers, and operated according to the parameters described in 

Section 3.2.  No tower was allowed to be chosen more than once per network, and the 

populations evolved according to the performance of each configuration in the inversions 

according to the specified metric.  Many iterations were necessary for the solution to 

converge, e.g. ~80, but once a solution was obtained it remained as a stable solution for 

more than 1500 iterations. 
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CHAPTER  4. RESULTS 
 

4.1 Sensitivity of Flux Uncertainty to Representation Error 

 

Significant flux uncertainty reduction resulted from adding 4, 9, and 24 of the 

Ameriflux towers, acting as virtual tall towers, to the existing flask network.  

Representation error was gradually decreased from 20 ppm to 0 ppm and a corresponding 

decrease in flux uncertainty consistently evolved in every case. (Figure 9.)  A difference 

from the flux uncertainty of the flask network did not evolve until around 7 ppm for the 

case with 4 towers, while the 9 tower case and the 24 tower case showed an improvement 

from the flask network around 10 ppm.  The 9 towers reduced uncertainty better than the 

4 towers, and the 24 towers reduced uncertainty the most.  While all three cases 

converged to zero uncertainty when zero ppm of representation error was obtained, the 

reality of the method is not illustrated well in these lower values.  Since the error also 

includes model transport error that cannot be reduced in these methods, near-zero values 

are probably unachievable.  

 

There is no reduction in the end of the range where representation error is 10 – 20 

ppm.  This is irrelevant since we already know that we can acquire representation errors 

of less than 10 ppm.  The meaningful information is illustrated at the beginning of the 

range of  0-10 ppm where uncertainty reductions are obtained on the order of  ~25%, 

~50%, and ~75% for the 4 tower, 9 tower, and 24 tower additions, respectively. 
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Uncertainty in Retrieved Annual Mean Flux: 
Temperate North America (mean of 12 models)
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Figure 9.  Sensitivity to representation error. 

 

The WLEF analysis showed that a bias much lower than 2 ppm could be achieved  

– and when 0.2 ppm is considered to be the representation error there is almost a 75% 

reduction in uncertainty when just five new virtual tall towers are added to the existing 

network.  This indicates that the virtual tall tower methodology has a favorable cost-to-

benefit ratio, where the leverage that can be gained in constraining the regional carbon 

budget from implementing a virtual tall tower network far exceeds the cost of initiating 

and maintaining such a simple observational network.  The flask network expands 

slowly, but many new flux towers are being funded and established every year.  If taking 

calibrated CO2 measurements were included in the objectives of all new flux tower 

campaigns, then five to ten virtual tall towers could be established within the next five 

years and carbon budget uncertainty in North America would be reduced by 50%. 
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4.2 Experiment 1:  North America Inversions   
 

 A comparison of the hand-picked networks shows that some configurations 

perform better than others in the inversions.  An illustration of these differences can be 

seen in the following figures where different five-tower networks in all of North America 

are compared (Figure 10), and five-tower networks that are only located in the 30 N to 

40 N latitude band of North America (Figure 11).  When examples of these groupings 

and their resulting final uncertainties are compared to each other, the slight but 

meaningful differences can be seen. (Table 6.)  Differences range from 0.11 to 0.025 Gt 

C yr –1.  Differences in the latitudinal transect networks are less, ranging from 0.02 to 

0.01 Gt C yr –1.  The five-tower networks that performed best were clusters of 

southeastern, midwestern, and mideastern US sites, where vegetation maps show that 

these regions receive the most precipitation and experience the most biomass growth in 

the continental US.  Southern sites performed better in the inversions than most 

midwestern sites.  Networks consisting of sites only in the western US performed poorly.  

Ultimately, no purely western, eastern, southern, or northern regional configuration 

performed better than combinations of sites in several of these areas.  Consequently, the 

same top performing networks chosen here were also selected by the genetic algorithm as 

the best for reducing North American carbon flux uncertainty.  The worst performing 

networks in this comparison included sites in the western coastal boundaries and the 

northern Great Lakes region.  The genetic algorithm also choose these same 

configurations for the worst performing networks.  These same best and worst networks 

found in the initial comparison and with the algorithm can be seen in Figures 12-18. 

 



 48 

Comparison of Flux Uncertainty Reductions from 5-Tower Networks 
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Figure 10.  Comparison of flux uncertainty reduction from 5-tower networks. 
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Figure 11.  Comparison of flux uncertainty reductions derived from 5-tower 

combinations all located in the 30 N to 40 N latitude band. 
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Table 6.  Examples of some experimental site groupings and their resulting final 

uncertainties for the regional North American inversions. 

 

Configuration Number of Ameriflux towers Final Uncertainty (Gt C yr –1) 

Southeast                                                            3 0.31580931 

Eastcoast 4 0.30703026 

Westcoast 4 0.389798522 

Midwest 5 0.29241708 

Westcoast + Midwest 9 0.275669038 

Westcoast + Eastcoast 8 0.287802636 

Westcoast + Southeast 7 0.292353272 

Midwest + Southeast 8 0.246241704 

Midwest + Eastcoast 9 0.246134832 

Southeast + Eastcoast 6 0.2727831 

Western US (west of 95 W) 6 0.322831452 

Eastern US (east of 95 W) 9 0.244639694 

30-40 N Latitude band  8 0.256647378  

40-50 N Latitude band  11 0.277762174   

50-60 N Latitude band  3 0.42665258  
 

 

  The genetic algorithm produced an optimal network scenario that 

consisted of five flux tower sites in Illinois, Tennessee, North Carolina, Maryland, and 

Kansas. (Figure 12.)  The second-best network produced by the algorithm only differed 

from the first network by one site. The southeastern Florida site replaced the northeastern 

Maryland site. (Figure 13.)  For the third-best network the algorithm changed the Florida 

site to a site on the west coast of California. (Figure 14.)  For the fourth-best network the 

algorithm only maintained the North Carolina site, and moved the other four to a 

horizontal transect of the Great Lakes to Northeast US region. (Figure 15.)   
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Figure 12.  The best performing network derived from the GA optimization scheme. 

 
 

          

 

 

 

 

 

 

 

 

 

 

Figure 13.  The second – best performing network. 
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Figure 14.  The third – best performing network. 
 
 

            
 

Figure 15.  The fourth – best performing network. 
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In all four optimal networks, the North Carolina site is included and in the top 

three optimal networks there is consistent selection of the sites in Kansas, Illinois, and 

Tennessee. The southeast cluster probably works best because it captures the winds as 

they have already traveled across the North American grid cell and areas of highest 

biospheric flux in the eastern US.   

 

 The network that proved to perform the worst in the inversions consisted of five 

towers along the western coast. (Figure 16.)  This particular network represents the 

strategy of trying to observe an inflow region, or longitudinal transect.  It probably 

performs poorly because it is close to the western boundary of the grid cell and has only 

received signal from Pacific marine air that has not yet been influenced by the continent.  

Performing second-worst in the northeast transect with an additional west coast station 

also doesn’t work because it there isn’t as much signal coming from the northern forests, 

plains, and lake regions of southern Canada and northern US. 

 
 

 

 

 

 

 

 

                         

Figure 16.  The worst performing network derived from the GA optimization scheme. 
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Figure 17.  The second – worst performing network. 

 

 

        

 

Figure 18.  The third – worst performing network. 
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In Figure 19 a comparison is shown between the different types of networks 

represented by acronyms:  FSK represents the flask network only, CNT represents the 4 

existing continental sites, CST represents the network where there are only sites on the 

east and west coasts.  TRN represents the sites that line up in a transect across a mid-

continental latitude, and CLS represents the combination of sites in the Midwest and 

Southeastern US.  FSK + CNT + CLS also represents the best-performing network from 

Figure 12.  FSK + CNT + CST represents the network presented in Figure 16.  FSK + 

CNT + TRN represents the network presented in Figure 17.  The uncertainty reduction 

between the FSK network (0.4590 Gt C yr –1) and the FSK + CNT + CLS network 

(0.2311 Gt C yr –1) is equal to 0.228 Gt C yr –1, or equal to a ~ 50% reduction.   
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              Figure 19.  A comparison of uncertainty reductions with different networks. 
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4.3 Experiment 2:  Global Inversions 

 

The genetic algorithm was initialized to compare networks of ten towers in a 

global domain, while populations of 100 networks were maintained during the evolution.  

An optimal network converged after 80 iterations, and consistently remained as the 

optimal solution through 1500 iterations.  This network consists of one tower in Spain, 

one tower in Portugal, two towers in Japan, two towers in Thailand, two towers in Brazil, 

one tower in Tennessee and one tower in Costa Rica.  (Figure 20.)   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20.  The best performing global network as derived by the optimization scheme. 
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This scenario is probably optimal because it places towers in the middle of the 

highest biospheric carbon flux zone in the eastern US and in three locations in tropical 

America.  These areas produce the greatest carbon fluxes in North and South America.  

There are no stations selected in Africa because there were no high-frequency data time 

series saved there by Transcom3 for the algorithm to choose.  Spain and Portugal were 

likely both selected – even though Europe is very well constrained, as the best possible 

way to constrain Africa.  Two stations were selected in tropical Asia, and two in Japan.  

These are likely to better constrain temperate Asia.  No towers were chosen from the 

European network, even though there is a dense population of towers to choose from, 

because that region is already one of the best constrained regions in the world.  (The 

tower sites in Spain and Portugal are maintained separately from the greater European 

network, and therefore are identified as being separate.) 

 

The following graph in Figure 21 shows the flux uncertainty reduction per land 

and ocean region according to the 22 partitions of Transcom3.  The greatest improvement 

is shown in regions which began the experiment as being the most underconstrained.  The 

greatest improvement is seen in tropical America where the flux uncertainty is reduced 

by 1.72 Gt C.  The second-best improvement is seen in South America with a reduction 

of 1.45 Gt C.  The third-best improvement is seen in tropical Asia where flux uncertainty 

is reduced by 0.87 Gt C.  The highest uncertainties remain in North and South Africa.  

The least uncertainty reduction occurs in Australia, Europe, Northern Ocean, Southern 

Ocean, and Indian Ocean.  However, these regions remain as the most constrained areas 
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of the world and are not likely to see improvement in uncertainty reduction before the 

formerly mentioned regions, regardless of the measurement campaign.  
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Figure 21.  Partitioning of uncertainties between 22 global regions. 

 

Table 8.  Uncertainty reduction for the three best performing Transcom regions, 

assuming a representation error of 2 ppm. 

 

 

 

   

 

 

Region 

 

Uncertainty Reduction 

Tropical America 1.72 Gt C 

South America 1.45 Gt C 

Tropical Asia 0.87 Gt C 
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The European AeroCarb network already has several sites where calibrated [CO2] 

measurements are being taken at flux towers, and two real tall towers that already exist. 

(Figure 22.)  I performed another global inversion experiment using the assumption that 

these continuous measurement sites were fixed as virtual tall towers.  I also assigned the 

real tall tower sites to be a fixed part of the existing network, so the genetic algorithm 

cannot be allowed to build networks by choosing these sites.  Being assigned as “fixed” 

sites, they were thus included in the inversions along with the flask network and the four 

existing tower sites in North America. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22.  European AeroCarb Network. Figure courtesy of Phillippe Bousquet. 
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When the genetic algorithm was run based on these assumptions, a network was 

produced that is almost identical to the previous network.  There is only one site 

difference between the two global networks produced.  When the inversions assume 

nothing about the AeroCarb sites, the optimal solution includes a site in Tennessee. When 

the inversions include the fixed AeroCarb sites, the optimal solution includes a site in 

Saskatchewan, Canada, in place of the Tennessee site.  Spain and Portugal are not part of 

the AeroCarb network and thus are still available to be chosen, and are indeed chosen 

again in order to constrain North Africa.  The two towers in Thailand and two towers in 

Japan are also chosen in both experiments, as well as the towers in Brazil and Costa Rica.  

(Figure 23.)  These consistent selections indicate that the inversions want to reduce the 

uncertainties in the large continental regions first as the most efficient way of improving 

the entire global budget.   

 

 

 

 

 

 

 

 

 

 

 

Figure 23.   The network selected as most optimal, when AeroCarb towers are included. 
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CHAPTER  5.    CONCLUSIONS  

 

The limited accuracy of regional and global carbon flux estimates due to a paucity 

of continental measurement stations can be overcome by using a virtual tall tower 

network.  Such a network is created by calibrating CO2 measurement sensors at existing 

flux towers, and using data that is already being taken at every site.  The results of this 

study support this idea and provide several conclusions that can help to understand what 

strategies are best for designing such a network in order to achieve optimal constraint to 

continental carbon budgets. 

 

Routine continuous calibrated measurements of [CO2] and other tracers 

could dramatically improve the uncertainty of regional flux estimates.  Creating 

virtual tall tower networks by combining real tall towers and calibrated measurements at 

flux towers can provide a dense land observational network that is effective at 

constraining surface carbon fluxes.  Such a network can be established sooner and 

cheaper than a new real tall tower network.  Regional inversions show that a ~50% 

uncertainty reduction can be achieved in the North American carbon budget by 

implementing only five new virtual tall towers, when maintained with a 2 ppm 

representation error.  This significant leverage in uncertainty reduction, that can be 

achieved with minimal cost, shows that virtual tall tower networks are potentially the best 

value for spending new money on measurement operations.  
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There are network configuration strategies that work better than others.  

Optimal virtual tall tower networks emphasize placement in and just downwind of strong 

fluxes, not “bracketing” or “gradient” approaches that seek to capture fluxes from both 

sides or as they change along a latitudinal transect. 

 

High frequency data has more information than monthly means.  Law et al. 

[2002] have shown that global inversions can be done using frequent (hourly or daily) 

measurements.  In this way we can take advantage of much bigger signals at synoptic 

time scales (recall the 35 ppm synoptic variations at WLEF, Sept 1997).  This requires 

accurate transport on regional and synoptic scales.  Nonetheless, this strategy is 

promising for the future because of the results that show dramatic improvement in 

uncertainty over inversions of monthly mean concentrations. 

 

In the future, it should be investigated as to whether mid-day sampling will 

produce systematic bias.  This can be done by coupling the Colorado State University 

(CSU) general circulation model with the CSU Simple Biosphere model (SiB) to generate 

an atmosphere of pseudo-data with diurnally varying fluxes.  These pseudo-data can then 

be inverted using the same cyclostationary inversion code that was used in this study to 

detect bias that might arise from the mid-day sampling method.  The twelve Transcom3 

inversion models are central to this particular methodology and it is assumed that the 

results are congruent with real world scenarios.  However, the choice of models might 

provide bias as well.  Ultimately, these simulations of optimal virtual tall tower networks 

can benefit from validation with other transport models. 
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Appendix II. The 24 Ameriflux Sites used in this Research 
 
 
CANADA – Lethbridge, Alberta 
CANADA – Mer Bleue, Ontario 
CANADA – Campbell River, British Columbia 
CANADA – BOREAS NSA, Saskatchewan 
CANADA – Camp Borden, Ontario 
CANADA – BOREAS SSA, Saskatchewan 
COSTA RICA – La Selva 
USA – AK Happy Valley, Alaska  
USA – AK Upad, Alaska 
USA – CA Jasper Ridge, California 
USA – CA Sky Oaks Biological Field Station, California 
USA – FL Gainesville - cypress wetland, Florida 
USA – IL Bondville, Illinois 
USA – KS Konza Prairie LTER, Kansas 
USA – MA Harvard Forest, Massachusetts  
USA – MD Cub Hill (Baltimore), Maryland 
USA – ME Howland Forest, Maine 
USA – MI University of Michigan Biological Station, Michigan 
USA – NC Duke Forest, North Carolina  
USA – OK Southern Great Plains ARM site, Lamont, Oklahoma  
USA – OR Metolius, Oregon 
USA – TN Walker Branch Watershed, Oak Ridge, Tennessee  
USA – WA Wind River Crane site, Washington 
USA – WI  Park Falls/WLEF, Wisconsin 
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