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ABSTRACT OF DISSERTATION 

 

REGIONAL AND NATIONAL-SCALE ANALYSIS OF CROPLAND CARBON 
CYCLING 

 

 

Increased global greenhouse gas (GHG) emissions, including carbon dioxide (CO2), are 

known to contribute to global warming.  Previous research has found carbon (C) 

sequestration in agricultural soils as a potential way of mitigating atmospheric CO2 

emissions.  

 

In the first part of this study, I evaluated the methods used by Annex 1 (developed) 

countries in inventorying the sources and sinks of agricultural soil GHG emissions.  In 

the second part, I assessed cropland soil C balance and C storage, considering residue C 

inputs and CO2 output from soils, at regional and national scale.  One of the main 

components in this study was estimating the crop residue C inputs, using available 

county-level yield and area data for major US crops during the period 1982-1997.  Since 

the existing annual data reported by the National Agricultural Statistics Service (NASS) 

have a large number of gaps (missing data), I filled those gaps by using regression 

analyses with the data from the Census of Agriculture, and a suite of linear mixed effect 
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models that incorporated county level environmental and economic variables. Then these 

comprehensive crop yield and area databases were used to estimate C inputs from crop 

residues (and cropland NPP).   

 

Interannual and spatial variability of residue C inputs were studied in relation to changes 

in production, weather and climate.  I also evaluated the potential use of Advanced Very 

High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) 

data in estimating the crop aboveground biomass and residue C inputs.  Finally I 

estimated the soil C stocks and annual stock changes in cropland soils (and CO2 loss due 

to decomposition), by using the Introductory C Balance Model (ICBM), and evaluated 

the C storage in soil and overall C balance over the US cropland.  During the 16-year 

period, we found an average cropland NPP and residue C input rate of 504 and 312 Tg C 

yr-1, respectively.  The interannual variability of C stocks ranged mostly within 20 Tg, 

and the overall C stocks increased by 14 Tg towards the end of the study period, implying 

the importance of cropland C dynamics in the overall C cycle. 

 

      Erandathie Lokupitiya 
      Graduate Degree Program in Ecology  
      Colorado State University 
      Fort Collins, Colorado 80523 
      Summer 2006 
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CHAPTER 1 

INTRODUCTION 

 

Global warming due to increased carbon dioxide and other greenhouse gas (GHG) 

emissions has become a major environmental concern.  Carbon dioxide concentration in 

the atmosphere has increased from 280 ppmv in 1800 to 368 ppmv in 2000, largely due 

to human activities (IPCC, 2001a).  While carbon dioxide from fossil fuel combustion 

constitutes the dominant source of anthropogenic emissions, land use and agriculture are 

also significant greenhouse gas sources (IPCC, 2001a), for CO2 as well as other gases 

(i.e. nitrous oxide and methane).  However, terrestrial ecosystems, including agricultural 

systems, can be both sources and sinks for CO2.  Soils constitute the single largest carbon 

stock in the terrestrial biosphere and hence improved knowledge of soil carbon dynamics 

is crucial for a clearer understanding of human perturbations of the global C cycle.   

 

Croplands contain the most intensively managed soils, which globally are estimated at 

around 170 Pg of carbon in the upper 1 m (Cole et al. 1996). With increasing emphasis 

on the need for mitigating global GHG emissions, considerable research has focused on 

the potential usefulness of cropland as a sink for CO2 (e.g. Cole et al., 1996; Lal et al., 

1998; Paustian, 1997).  The process of increasing the amount of C stored in soils (as well 

as in long-lived biomass such as trees) is often termed ‘carbon sequestration’.  Because 

the C entering the soil is derived from CO2 fixed by plants, carbon sequestration 
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constitutes a net removal of CO2 from the atmosphere. Soil carbon sequestration can be 

achieved by adopting management practices that increase the amount of C added to soils 

and/or reduce the C emitted (e.g. from microbial decomposition) from soils.  Various 

studies have found that management practices such as no till or reduced tillage, crop 

rotation, fertilization and organic amendments, etc., can help significantly increase the 

carbon storage within agricultural soils (Burke et al., 1995; Paustian et al., 1995, 1997).  

At global scale, potential C sequestration in agricultural soils through changes in land use 

management practices has been estimated at 600- 900 Tg yr-1 (Cole et al., 1996). 

 

My research has focused on improving estimates of soil C dynamics in agricultural 

ecosystems at regional and national scales, in the United States.  A main objective of the 

work was to provide better quantification and understanding of the role of cropland soils 

in GHG emissions and in GHG mitigation through C sequestration. 

   

International cooperation for mitigating GHG emissions was strengthened by the 

adoption of the United Nations Framework Convention on Climate Change (UNFCCC) 

in 1992.  Member countries of the UNFCCC now prepare national inventories of GHGs 

to evaluate the emissions by sources and removal by sinks.  Thus, the first part of my 

research (Chapter 2) involved a review and analysis of methods currently used by 

UNFCCC member states to inventory GHG emissions from agricultural soils. 

 

The availability of spatially-explicit data for estimating C inputs is essential in 

developing accurate inventories and estimating accurate C balances for cropland 
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ecosystems.  Currently in the US, there is extensive statistical data on annual agricultural 

production dating back several decades, which represents a very rich data source.  

However, these data were not specifically intended to address C balance questions and 

other limitations exist that need to be dealt with to apply the data to analyzing ecosystem 

C dynamics.  The main sources of agricultural statistics in the US are annual surveys 

(including yields and crop areas) conducted by the National Agricultural Statistics 

Service (NASS).  A more comprehensive data set, but collected only every five years, is 

provided by the US Census of Agriculture (Ag Census).   

 

As with virtually all large databases, gaps in both spatial and temporal coverage, limit the 

utility of the extant databases.  Over the past 2-3 decades, satellite-based sensors have 

been deployed with capabilities to estimate vegetation attributes, including productivity 

(Campbell, 2002; Doraiswamy et al., 2001, 2003, 2004, 2005; Hill and Donald, 2002).  

Thus, remote sensing represents an alternative or complementary data source to fill in 

gaps in ground-based surveys.  As part of my research (Chapter 3), I investigated the 

potential of remote sensing, using a vegetation index based on the Advanced Very High 

Resolution Radiometer (AVHRR), to estimate crop production in an agriculturally 

dominated state, Iowa. 

 

Empirical modeling approaches can also be used to fill data gaps and process agricultural 

statistics for use in C cycle analysis.  In the third part of my dissertation (Chapter 4), I 

derived and tested a variety of statistical models to combine NASS and Ag Census data 

and to fill gaps in yield and crop area estimates.  The new synthetic database was then 
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used, with empirical relationships relating crop biomass components to yield 

measurements, to analyze the spatial and temporal patterns of crop net primary 

production and crop residue inputs to soil for the whole US (Chapter 5), for a 16 year 

period (1982-1997).    

 

The change over time in soil C stocks, and hence the net exchange between the 

vegetation-soil system and the atmosphere, is determined by the balance of C inputs and 

losses of C (predominantly through decomposition).  Currently there is no national 

measurement network in the US to directly measure soil C stock changes over time.  

Hence, soil C balance estimates at regional or national scales use model-based 

approaches (Paustian et al., 2002; Eve et al., 2001, Ogle et al. 2003).  I used a simple 

dynamics simulation model, the Introductory Carbon Balance Model (ICBM) (Andren 

and Kätterer, 1997, Andren and Kätterer, 2001, Andren et al., 2004), to analyze spatial 

and temporal trends in US cropland soil C (Chapter 6), where the model was driven, in 

part, by the estimates of C inputs described above.  A particular focus of the study was to 

analyze the interannual variability of projected changes in soil C stocks and the 

implications of this variability for assessing compliance with mitigation policies. 

An overview of the major findings and conclusions of these studies is provided below. 

  

National inventory methods by the Annex 1 countries in estimating agricultural soil 

greenhouse gas emissions (Chapter 2). 

So far, the developed countries have been responsible for the majority of global GHG 

emissions; these countries are referred to as ‘Annex 1’ countries under the United 



 

 5

Nations Framework Convention on Climate Change (UNFCCC).   According to the 

provisions of the UNFCCC, parties to the convention need to prepare national inventories 

of GHGs (excepting those controlled by the Montreal Protocol), including the emissions 

by sources and removal by sinks, and submit those to the Conference of Parties (COP), 

the convention's principal policy making body.  These inventories need to follow the 

revised 1996 guidelines (IPCC, 1997a,1997b,1997c) provided by the Intergovernmental 

Panel on Climate Change (IPCC), as elaborated by the Good Practice Guidance (IPCC-

GPG, 2000, 2003; IPCC, 2001b), and the UNFCCC reporting guidelines on annual 

inventories. 

 

I studied the methods used by Annex 1 countries (a total of 39 countries, except for 

Turkey who recently ratified the convention) under the UNFCCC in estimating the GHG 

emissions/sinks in agricultural soils, for reporting in their annual national GHG 

inventories.  The IPCC guidelines (IPCC-GL) outline methods structured according to 

three tiers, with increasing complexity and data requirements for higher tiers: 1) Tier 1 

consists of simple equations and global default emission factors provided in the IPCC-GL 

(and IPCC-GPG); 2) Tier 2 uses the IPCC-GL default equations but requires country-

specific parameters that better account for local climate, soil, management and other 

conditions; and 3) Tier 3 methods are based on more complex models and inventory 

systems, typically using more disaggregated activity data that better capture variability in 

local conditions (IPCC, 2000, 2003).  I assessed to what extent Annex 1 countries have 

proceeded to develop county-specific Tier 3 methods in estimating agricultural soil GHG 

emissions for their national inventories.  I found that 82% of the countries report nitrous 
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oxide (N2O) emissions in the inventories, and about 56% of the countries still use the 

default method recommended by the IPCC. Less than 35% of the countries report CO2 

emissions, and only a handful of countries have developed advanced Tier 3 methods.  

These Tier 3 methods mostly incorporate complex, process-based models.  Lack of 

spatially explicit activity data is a major constraint for implementing higher tiered, 

country-specific methods for inventory purposes.   

 

Studying the C dynamics of US croplands (Chapters 3-6). 

 Chapters 3-6 of my dissertation focused on the regional and national scale C dynamics of 

US cropland over a 16-year period (1982-1997).  This study period was chosen based on 

the availability of digital data in both National Agricultural Statistics Service (NASS) and 

the Census of Agriculture (Ag Census), the two main national agricultural statistical 

databases.  In Chapters 3-5, I mostly focused on estimating and evaluating the spatial and 

temporal variation of crop residue C inputs to cropland soils by filling the gaps in 

available county-level annual crop statistics.  In the final chapter (Chapter 6) I focused on 

studying the overall C dynamics in the US cropland, considering the balance between the 

annual C inputs and outputs from the US cropland soils, with particular emphasis on the 

interannual variability and implications on short-term C dynamics in the cropland 

ecosystem.   

 

In order to achieving the above research targets, I decided to use the annual crop statistics 

reported by NASS as a basis for a new synthetic database of crop NPP and residue C 

inputs, since it conducts and reports annual surveys of production and area for all major 
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crop species in the US. To develop a comprehensive database (without gaps), I explored 

the potential for augmenting the data with information from remote sensing (Chapter 3) 

as well as statistical modeling to fill gaps and derive estimates of residue C inputs 

(Chapters 4 and 5). 

 

I evaluated the potential for using of remotely sensed information in estimating 

aboveground biomass and residue C inputs, during the years when NASS has not 

reported yield data.  In several past studies, remotely sensed information has been used in 

estimating crop yields and aboveground biomass (Hill and Donald, 2002; Hansen and 

Schjoerring, 2003; Doraiswamy et al., 2001, 2003, 2004, 2005). As described in Chapter 

3, I used canonical correlation analyses between Normalized Difference Vegetation Index 

(NDVI) and biomass variables, followed by best subset multiple regression analyses, to 

develop model relationships between NDVI and aboveground biomass.  Biweekly 

AVHRR NDVI (1 km resolution) and crop biomass derived using allometric equations 

relating yields to crop biomass (Williams and Paustian, submitted) were used as the input 

datasets.  Canonical correlation creates a new set of canonical variates from the original 

NDVI in which the information from highly correlated, temporally close NDVI are 

combined.  This approach was chosen as the best approach since it removed any effects 

from the multicollinearity among temporally close NDVI.       

 

In the canonical correlation analyses, a cross-validation approach was taken, using the 

biomass data (estimated from the yields reported by NASS) for Iowa under three 

scenarios, in which 10, 20, and 40% of the data were made randomly missing.  
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Regression models were derived between the crop biomass and the canonical variates of 

the training (non-missing) data.  The ability of using the NDVI data from one, two and 

three years in estimating the missing biomass data within the same period and a different 

period that fall outside the time period used in model derivation, were evaluated, as 

detailed in Chapter 3.   

 

NDVI was positively correlated with crop biomass and original NDVI pixel values 

during the period from end June to end August; however, this correlation varied in value 

among the crops and different years, ranging from 0.1 to 0.84.  It was found that 

combining data from all three years is the best way in predicting the missing data in any 

of the participating years.  The estimated values under the all three scenarios were close 

to the observed values with less than 5% relative error, and the approach we used was 

found to be very effective in predicting biomass from NDVI, especially in the presence of 

missing data.   

 

Several  past studies had estimated the C sequestration potential in the US (Eve et al., 

2001; Sperow et al. 2003; Ogle et al., 2003). Due to the large range of variation in the 

estimates by these studies, we felt the need of using a comprehensive crop database for 

having more accurate estimates of C stock changes in cropland soils.  In this effort, I 

assumed that any influence in management would be reflected in the observed crop 

productivity over the study period that we chose (i.e. 1982-1997). 
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Thus, to estimate C inputs and soil C stocks over the entire study period, I developed 

comprehensive yield and crop area databases for major US crops, as detailed in Chapter 

4, by filling the gaps in the county-level crop areas and yields reported by NASS during 

1982- 1997.  I evaluated several statistical approaches to fill in the gaps in NASS crop 

yield and acreage data over this period.  Leave-one-out and leave-k-out procedures were 

used to find out the most suitable statistical method (Lokupitiya et al., 2006), and 

regression analyses between NASS and Ag Census crop yield data and multiple 

imputation technique in SAS (version 8.2) were found to be the best methods.   I filled 

some of the gaps in county-level yields and crop areas by using regression analyses with 

the data from Census of Agriculture (reported every 5 years). The remaining gaps were 

filled using linear mixed effect models incorporating county-level environmental and 

economic variables.  These models were run at Land Resource Region (LRR) level. The 

environmental variables used in filling the the models for gaps in yield data included 

mean monthly summer temperature, annual precipitation, precipitation/potential 

evapotranspiration ratio, and irrigated/total crop area ratio, and the economic and 

environmental variables used for filling the gaps in crop area data included crop price, 

fertilizer cost (unit cost of anhydrous ammonia), diesel cost, and precipitation of the 

preceding year. This way I developed comprehensive county-level yield and crop area 

databases for major US crops by filling all the gaps in the data reported by NASS.  A 

thorough quality assurance and quality control procedure was followed on the final data 

created, and the crop data were compared against the data from the National Resource 

Inventory (NRI). 
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Then using those databases, I estimated and studied the interannual variability of residue 

C inputs in relation to trends in cropland productivity, including NPP, and variation in 

weather over the 16-year period (Chapter 5).  Residue C inputs were estimated by using 

the dry biomass in yields, and allometric relationships incorporating information from 

harves indecs and root: shoot ratios for specific crops, in deriving residue C inputs from 

yield dry matter (Williams and Paustian, submitted).  The analyses on the temporal and 

spatial variation of estimated residue C inputs were performed for different Crop 

Production regions (CPRs) and the country as a whole.  

 

 I found an overall increase in residue C inputs among the different CPRs over the period 

despite the interannual variability caused by weather changes.  The residue C inputs 

showed an inverse relationship with increase in growing season temperature over the 

study period. Among the different crop types, corn had the largest C inputs, followed by 

soybean, wheat, and hay crops.  The average cropland NPP over the study period was 504 

Tg C yr-1, and the highest NPP was observed in 1994 (i.e. 570 Tg C yr-1), which was 

about 40% of the CO2-C emissions from fossil fuel burning by the country during that 

year.  The estimates were close to the NPP estimates by other recent studies (Lobell et al., 

2002).  The findings of the current study implicated the importance of the US cropland, 

especially the North Central region and Central and Northern Plains that had the largest 

crop areas, in absorbing atmospheric CO2-C and the overall US C cycle.  

 

In the final part of the study (Chapter 6), I modeled the decomposition dynamics of the 

residue C inputs I estimated, using   the Introductory C Balance Model (ICBM; Andren 
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and Kätterer, 1997, Andren et al., 2004).  ICBM includes two soil organic matter pools 

and four parameters other than residue C inputs.  The parameters include two 

decomposition coefficients for ‘young’ and ‘old’ soil C pools (kY and kO), a humification 

coefficient (h), and an external influence coefficient (re) to represent any impact from 

changes in weather including temperature and soil water balance.  The daily variation in 

soil moisture, temperature, and potential and actual evapotranspiration information were 

used in estimation of re considering the differences in crop type, soil type, and practice 

(irrigated vs rain fed crops); the daily values were averaged to represent the county-level 

annual environmental variation which represented the environmental influence on the 

decomposition of crop residues.   

 

I found that the ICBM-predicted C stocks were within the ranges observed for soil pedon 

data reported by the National Soil Information System (NASIS, USDA), based on soil 

samples taken from different parts of the country.  The estimated soil C stocks followed 

both the variation in cropland area and the observed changes in weather over the 16-year 

period.  Since total cropland C stocks showed drastic variation due to changes in crop 

areas over time, I considered only the C stocks and stock changes in the permanent 

cropland areas (i.e. the minimum crop area observed for a county over the 16-year period 

was considered as the permanent cropland), in the analyses.  There was an overall 

increase in C stocks in the different CPRs over the 16-year period.  According to the 

model results, the total C stocks in the irrigated and rain fed cropland at national scale 

were 45 Mg ha-1 and 36 Mg ha-1, respectively, and the irrigated cropland was only about 

10% of the total cropland over the study period.  
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The largest C stocks were observed in the cropland areas in the Far West and North 

Central regions.  C stocks in the US permanent croplands increased by 14 Tg over the 16 

year period (on the average 0.9 Tg C yr-1), which is slightly lower than the estimate by 

Ogle et al. (2003) for the same period (1982-1997).  The interannual variability was still 

significant with gains and losses in C stocks due to the observed interannual weather 

variation.  The trend clearly showed the impact from climate events such as El Nino.  

Overall net gains of C stocks were high after 1993, and significant increases (over 10 Tg 

C yr-1) were found especially in the years following those that had high productivity.  

Significant losses could be found in the years 1983, 1984, 1987, 1989, and 1994, which 

were preceded by years that had lower than average productivity due to extremes in 

weather.  The estimated annual ‘apparent’ cropland NEP (i.e. the balance of NPP left 

after reducing the CO2 released in microbial respiration and any grain exports from the 

US) ranged from 14 to 50 Tg, during the period 1994-1997.  Therefore further 

improvement of cropland productivity and increased use of land under management 

practices such as no till (which is currently only about 20% of the US cropland (CTIC, 

2002)) would further reduce net CO2 emissions from the US croplands, resulting in 

increases in C stocks and NEP, which would have significant implications on the overall 

C cycle and CO2-C mitigation by the country.  
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CHAPTER 2 

 

AGRICULTURAL SOIL GREENHOUSE GAS EMISSIONS: A REVIEW OF 
NATIONAL INVENTORY METHODS 

 

ABSTRACT 

 

Parties to the UNFCCC are required to submit national GHG inventories, together with 

information on methods used in estimating their emissions.  Currently agricultural 

activities contribute a significant portion (ca. 20 %) of global anthropogenic GHG 

emissions, and agricultural soils have been identified as one of the main GHG source 

categories within the Agricultural Sector.  However, compared to many other GHG 

sources, inventory methods for soils are relatively more complex and have been 

implemented only to varying degrees among member countries. 

 

This review summarizes and evaluates the methods used by Annex 1 countries in 

estimating CO2 and N2O emissions in agricultural soils.  While most countries utilize the 

IPCC default methodology, several Annex1 countries are developing more advanced 

methods that are tailored for specific country circumstances.  Based on the latest national 

inventory reporting, about 56% of the Annex 1 countries use IPCC Tier 1 method, about 

26% use Tier 2 methods, and about 18% do not estimate or report N2O emissions from 

agricultural soils.  More than 65% of the countries do not report CO2 emissions from the 
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cultivation of mineral soils, organic soils or liming, and only a handful of countries have 

used country specific, Tier 3 methods.  Tier 3 methods usually involve process-based 

models and detailed, geographically specific activity data. Such methods can provide  

more robust, accurate estimates of emissions and removals but require greater diligence 

in documentation, transparency and uncertainty assessment to ensure comparability 

between countries.  Availability of detailed, spatially explicit activity data is a major 

constraint to implementing higher tiered methods in many countries.  

 

INTRODUCTION 

 

Efforts to mitigate increasing greenhouse gas (GHG) concentrations through international 

cooperation have accelerated since the beginning of the 1990's, with the adoption of the 

United Nations Framework Convention on Climate Change (UNFCCC) in 1992 and the 

Kyoto Protocol in 1997.  The UNFCCC entered into force in 1994 and so far over 180 

countries have ratified it.  The prime objective of the UNFCCC is to stabilize 

atmospheric GHG emissions at a level that would not further damage the climate system 

from human interference.   

 

Under the UNFCCC, member countries are expected to submit national GHG 

inventories.    Estimating the sources and sinks of GHG emissions at a national level is 

needed to quantify the sources and sinks from individual countries and to assess 

compliance with international agreements to reduce emissions.  Accurate inventories also 

improve understanding of the relative importance of different sinks and sources and their 
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spatial distribution.  Developed countries that are listed in Annex I of the UNFCCC 

(referred to as ‘Annex I countries’) are expected to submit an annual national inventory 

report (NIR) containing detailed and complete information on their emissions for all 

years from a base year (which is 1990 for the majority of the countries) to the current 

year for the annual inventory submission (UNFCCC, 1999).   

 

Annex 1 countries have submitted national GHG inventories since 1994, and since 1996 

they have made annual submissions. The quality, information content, and transparency 

differ substantially among the reporting countries (Acosta et al., 2002) and only some 

countries have published detailed method descriptions.  According to Acosta et al. 

(2002), methodological problems associated with GHG inventories include the use of 

outdated emission factors, insufficiently robust assumptions, calculation errors, and use 

of methods, parameters, and emission factors that deviate substantially from IPCC default 

method and values. 

 

Inventory methods for land use and agriculture related activities, in general, and for soils 

in particular, are arguably among the more complex and least developed inventory 

sectors, yet soils are a significant sink/source category for many countries.  This paper 

reviews the methodologies used by member parties to the UNFCCC to prepare national 

GHG inventories of soil emissions and sinks.  Our objective is to assess the current state, 

recent developments, and future trends in soil emission inventory methods. Since many 

non-Annex 1 countries have not yet reported soil emission inventories, our focus is on 

methodologies used by Annex 1 countries.  
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IMPORTANCE OF AGRICULTURAL SOILS AS A SOURCE AND SINK OF 

GHG EMISSIONS 

 

Currently, agricultural activities contribute a significant portion (ca. 20%) of global GHG 

emissions (Figure 1), making it imperative for many countries to inventory GHG 

emissions from agricultural soils.  Nitrous oxide (N2O) is the predominant GHG added to 

the atmosphere from agricultural soils, in terms of global warming potential.  N2O is 

produced through both nitrification and denitrification, which are microbial-driven soil 

processes that naturally occur in soils; these processes are stimulated by increased N 

inputs.  Currently about 60% of total N2O emissions in Annex 1 countries are derived 

from agriculture (Figure 2).  Anthropogenic increases in N2O emissions in agricultural 

soils occur mainly as a result of fertilizer and manure use.  Total N2O emissions from all 

Annex 1 countries (Table 1), as well as for the US alone, remained fairly constant during 

the 1990s (Figure 3).   

  

Soils are the major land surface carbon (C) reservoir, containing roughly 1500 Pg C, 

about three times the amount of C in terrestrial vegetation (Schlesinger, 1997).  

Agricultural soils contain around 170 Pg of C in the upper 1m (Cole et al., 1996).  

Emissions of CO2 from soil are significant, particularly for land use change, often 

involving the conversion of native ecosystems to agricultural uses (Figure 1).  

Agricultural soils can also contribute to the removal and storage of atmospheric carbon 

dioxide (CO2) into soil organic matter.    C storage (or C sequestration) in agricultural 

soils can be increased by management practices such as no-till, organic amendments, 
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conservation reserves, and improved crop rotation and fertilization practices (Paustian et 

al., 1997, 2000 ; Smith, 2004; Ogle et al., 2005).  The potential C sequestration in global 

agricultural soils through changes in such management practices has been estimated at 

600- 900 Tg yr-1 (Cole et al., 1996).  According to IPCC (2000a), potential C stock 

changes due to land use and management improvements could be 125 Tg yr-1 on annual 

croplands and as much as 800 Tg on all agricultural land (including grazing lands and 

agroforestry), by 2010, with concerted efforts to adopt best management practices.  

 

Although methane (CH4) emissions from agricultural soils, specifically in paddy rice, are 

an important GHG source globally, CH4 from rice cultivation is of minor importance for 

Annex 1 countries (Figure 4).  Hence, only methods for estimation of CO2 emissions and 

removals and N2O emissions from agricultural soils are dealt with in this paper.   

 
METHODOLOGIES FOR ESTIMATING GHG EMISSIONS AND 

REMOVALS IN AGRICULTURAL SOILS 
 

According to Articles 4 and 12 of the UNFCCC, national inventories need to use 

comparable methodologies agreed upon by the Conference of Parties (COP), the 

UNFCCC's principal policy-making body.  Currently, parties to the UNFCCC use the 

1996 Revised IPCC Guidelines (IPCC 1997 a, b, c), as elaborated by the IPCC Good 

Practice Guidance (IPCC 2000b, 2003), and the UNFCCC Reporting Guidelines on 

Annual Inventories (FCCC/CP/1999/7).  The IPCC Guidelines provide general guidance, 

default calculation methods, and reporting formats for national inventories in order to 

promote transparency and comparability among countries.  The IPCC Guidelines 

(referred to as ‘IPCC-GL’) and Good Practice Guidance (IPCC-GPG) provide a default 
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methodology (Tier 1) for estimating GHG emissions as well as guidance in developing 

and using country-specific data and methods (referred to as Tier 2 and Tier 3 methods – 

see below).  Some Annex 1 countries have begun to develop and implement these 

country-specific ‘higher-tiered’ methodologies.  The methodologies currently used by 

different member countries to the UNFCCC in estimation of CO2 and N2O are 

summarized in Table 2.  A description of the 1996 IPCC default methodology and 

methods developed by some Annex 1 countries for agricultural soils follow. 

 

IPCC inventory methodology 

 

As described in the IPCC-GPG, methodologies for agricultural soils could fall under 

three main tiers, with increasing complexity and data demands occurring at the higher 

tiers: 1) Tier 1 consists of simple equations and default emission factors provided in the 

IPCC-GL (and IPCC-GPG); 2) Tier 2 uses the IPCC-GL default equations but requires 

country-specific parameters that better account for local climate, soil, management and 

other conditions; and 3) Tier 3 methods are based on more complex models and inventory 

systems, typically using more disaggregated activity data that better capture variability in 

local conditions (IPCC 2000b, 2003).  Member countries are encouraged to provide 

uncertainty estimates as well as mean values (IPCC, 1997a, b, c). 
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N2O emissions from agricultural soils 

 

The IPCC-GL and IPCC-GPG provides methodology for estimating: 1) direct N2O 

emissions from soils; 2) indirect emissions of N2O (i.e. due to losses from N 

volatilization and leaching that are subsequently deposited in non-agricultural 

environments and are subject to loss as N2O); and 3) direct soil emissions of N2O from 

animal production (during waste storage for confined livestock and from livestock 

grazing).  Direct N2O emissions from soil are estimated using an equation (Eq. [1]) that 

incorporates emissions from all major N inputs and does not discriminate among different 

N sources (IPCC 1997b, c). 

 

N2O DIRECT (kg N yr-1) = [FSN+FAW+FCR+FBN]*EF1 + FOS*EF2 + FPRP*EF3  [1] 

Where: 

FSN = N input from synthetic fertilizer use (kg N yr-1)  

FAW = N from livestock manure applied to soil (kg N yr-1) 

  FBN = total N input in N-fixing crops (kg N yr-1)  

FCR = N input from crop residues (kg N yr-1) 

FPRP = N input from animal excretion on pasture/range/paddock (kg N yr-1) 

FOS = area of cultivated organic soils (ha) 

EF1= emission factor for direct N application (kg N2O-N kg-1 N added) 

EF2 = emission factor for cultivated organic (e.g. peat) soils (kg N2O-N ha-1 yr-1) 

EF3= emission factor for excretion on pasture/range/paddock (kg N2O-N kg-1 N 

added) 
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Indirect soil N2O emissions are defined as deriving from the volatilization (as NH3 and 

NOX) and subsequent deposition of previously applied N, as well as emissions from 

applied N that has been transported to riparian or aquatic environments through leaching 

and runoff.  Thus the actual emissions may be occurring in non-agricultural 

environments, but the original source of the applied N was from agricultural soils.  Other 

N2O emissions from animal waste management systems are included in the agricultural 

sector but are not related to soil management.   

 

According to the latest National Inventory Report (NIR) submissions, a majority of  

reporting countries use the IPCC default method (about 70% of the countries) and default 

emission factors (about 75% of the countries) in estimating N2O emissions from 

agricultural soils. 

 

Emissions/ removals of CO2 from agricultural soils 

 

Depending on the management practices being used, and their relative effect on C inputs 

from residues vs. C losses from decomposition, agricultural soils can be either a net 

source or a net sink for C (Paustian et al., 1997, 2000; Lal, 2004; Smith, 2004).  The 

IPCC methodology estimates net CO2 emissions (sinks and sources) from: 1) changes in 

C stocks of mineral soils due to changes in land-use practices; 2) CO2 emissions from 

organic soils converted to agriculture or plantation forestry; and 3) liming of agricultural 

soils (IPCC, 1997b, c, 2003). 
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For CO2 emission from mineral soils, the net change in soil organic C is estimated for 

lands under different categories of land use and management, stratified by climate and 

soil type, over a specified time period; the default time period is 20 years.  Estimates of 

soil C stocks are for the top 30 cm of the soil profile, where the impacts of changes in 

land use and management are greatest and where most field measurements have been 

reported (Ogle et al., 2003a).  Hence, changes in soil C stocks that may occur deeper in 

the profile are not captured by the method.   

 

The default methodology uses a set of coefficients (stock change factors) based on soil 

type, climate, disturbance history, productivity, and management practices.  Climate is 

divided into nine categories based on average annual temperature and precipitation.  Soils 

are defined by taxonomic characteristics based on broadly defined soil properties, 

including texture, clay mineralogy, morphology, and drainage, that influence the ability 

of a soil to store organic matter.  Default values for reference C stocks and stock change 

factors are stratified according to climate and soil type. Reference C stocks represent 

values found under native, unmanaged ecosystems.  

 

The basic method combines the reference C stock, stock change factors, and activity data 

for land use and management changes over time.  Mineral soil C stock change is 

estimated as shown in Eq. [2] (IPCC 1997c, 2003). 

 

ΔSC = [(SC0 – SC(0-T))]/D  [2] 

 Where, 
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SC = ΣcΣsΣiSCR* FLU* FMG* FI *A 

Where: 

ΔSC = annual soil carbon stock change (Mg C yr-1)  

SC0 = soil organic carbon stock in the inventory period end year, for current land 

use and management  (Mg C ha-1) 

SC(0-T) = soil organic carbon stock T years prior to the end year of the inventory 

period  (Mg C ha-1) 

c represents climate zone, s soil type and i is the set of land management systems 

defined for the country.   

A= land area of each parcel (ha) 

SCR = the reference carbon stock (Mg C ha-1) 

FLU = stock change factor for land use type (dimensionless) 

FMG = stock change factor for management/disturbance regime (dimensionless) 

FI = stock change factor for carbon input level (dimensionless) 

D= time period for transition between equilibrium C stocks, as represented by 

stock change factors (default is 20 years). 

 

While the formulation is designed to be generic for all soils, the interpretation and values 

of these factors vary according to the type of ecosystem (i.e. cropland, grassland, forest) 

and the changes in land use and management that are being represented.  For example, 

the land use factor provides a baseline level for C stocks in permanent cropland, short- 

(<20 yr) and long- term (>20 yr) cropland set-aside (to perennial grasses or trees), 

shifting cultivation, and managed grassland and forest, relative to stock levels in native 
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unmanaged ecosystems (where FLU=1).  For cropland, the stock change factor for 

management regime (FMG) specifies relative C stock values for different tillage regimes.  

For cropland and managed grassland (pasture, hayland), the input factor (FI) relates to 

management practices that affect the relative amount of C returned to the soil (as plant-

derived residues or exogenous additions like animal manure) for a particular land use 

type.  Hence for cropland, it is dependent on the type of crops grown, whether residues 

are removed or retained, and whether manures are added.  For grassland, FI depends on 

management practices that influence primary productivity, such as fertilization, species 

improvement, and grazing regime.   More detailed definitions and default values for stock 

change factors are given in the Good Practice Guidance for LULUCF (IPCC, 2003). 

 

The default inventory period, to which land use and management activity are applied, is 

20 years, i.e., default values for relative stock change factors are estimated for a 20-year 

period (IPCC, 2003).  However, the method can be applied for an inventory period of 20 

years or less, using the default factors.  In calculating inventories for year ‘t’, land areas 

are stratified by climate, soil type, and “initial” land use and management for year t-T 

(where T is the length of the inventory period), and then land use and management 

conditions are specified for the same areas in year t.  Changes in C stocks from one land 

use/management system to another are assumed to be linear over time.  Implicit in the 

method is that if there are no changes in land use or management (i.e. FLU, FMG and FI are 

unchanged) for a given land area over the inventory period, then soil C stocks remain 

constant and there is no net emission or removal of CO2.   
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CO2 emissions from cultivated organic soils and from liming of soils are handled 

differently from C stock changes in mineral soils.  Both are considered as only sources of 

CO2 and are estimated using simple emission factors (i.e. annual loss per unit area) 

multiplied by the areas of each activity.  Net C loss from organic soils is calculated using 

the land area and annual loss rates that vary by broad climate divisions and land-use.  The 

default values for annual loss rates of C given in this method are derived from a global 

survey on published literature.  Emissions from liming are estimated assuming that the 

carbonate-C added (i.e. limestone or dolomite) is emitted as CO2 in the year of 

application. 

 

CORINAIR methodology 

 

Countries of the European Union (EU) prepare their national inventories according to the 

EU emission inventory program known as CORINAIR (CORe INventory of AIR 

emissions in Europe).  It was initiated in 1985 to assist in the development of consistent, 

comparable, and transparent national inventories for “conventional” air pollutants such as 

SOx, NOx, and VOC.  This system has evolved over time and guidelines for preparing 

atmospheric emission inventories by the EU member countries are included in the EMEP 

(i.e. Co-operative Programme for Monitoring and Evaluation of the Long-Range 

Transmission of Air Pollutants in Europe) / CORINAIR Atmospheric Emission Inventory 

Guidebook, first published in 1996.   The source categories covered under CORINAIR 

1990 include eleven main source sectors, including agriculture.   
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CORINAIR methodology involves more disaggregated source categories and spatial 

detail, and   CORINAIR-based estimates can be transformed appropriately for different 

reporting purposes, including the IPCC format.  EMEP/CORINAIR (2002, 2004), has 

classified GHG emissions from agricultural soils (in accordance with Common Reporting 

Format (CRF)/ IPCC classification) under the categories: 1) Cultures with fertilizers 

(where emissions of NH3, N2O and NOx, CO2, CH4, and non- CH4 volatile organic 

compounds (NMVOCs) are estimated); and 2) Cultures without fertilizers (where 

emissions of NH3, N2O, NOx and VOCs are estimated).  The methodology suggested for 

estimating N2O emissions follows the IPCC default methodology; IPCC Direct and 

Indirect N2O subsource categories in agricultural soils have been reported as CORINAIR 

sub-sectors for Cultures with/without fertilizers (EMEP/CORINAIR, 2004).   

 

In addition to the simpler methodology based on the IPCC default method, an improved 

methodology for N2O emissions is given; methods have been developed based on 

multivariate regression analyses that incorporate important factors such as climate, 

weather, and soil conditions that control N2O emissions.  Mechanistic simulation models 

such as DNDC (Li, 2000) have also been applied at regional scale to inventory N- trace 

gas emissions (EMEP/ CORINAIR,2004). 

 

No alternative methodology from the IPCC has been suggested for estimating CO2 

emissions and removals under Cultures with fertilizers.  IPCC land use changes 

considered under Cultures with fertilizers include: a) conversion of woodland to 

grassland and cropland, b) conversion of grassland to cropland and vice versa, and c) 
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other land use change activities that include drainage of wetlands and cultivation of 

organic soils.  Although this latter category of land use changes is a significant source of 

CO2 in certain countries (especially in northern Europe), such CO2 emissions are rarely 

reported in national inventories, as no default methodology has been provided under the 

CORINAIR methodology.  However, higher emission factors compared to IPCC for CO2 

released from cultivated organic soils have been suggested based on recent measurements 

made in Europe (EMEP/CORINAIR, 2004).   

 

National GHG accounting systems developed by certain Annex 1 countries 

 

Currently the IPCC default methodology dominates among the methods used by Annex 1 

countries in estimating national GHG emissions in agricultural soils.  In recognition of 

the limitations inherent in using global and regional default values, the IPCC-GL and 

IPCC-GPG encourage countries to develop methodologies more appropriate for their 

national circumstances.  However, development of such methods requires considerable 

time and resources, including testing and validation prior to implementation.  

Consequently, relatively few country-specific systems have been fully implemented to 

date.  In this section, country-specific methods developed by certain Annex1 countries to 

estimate agricultural soil CO2 and/ or N2O emissions and removals are discussed.  In each 

of these countries, emissions and/or removals from soils are a major component of the 

total impact of GHG in the agricultural sector (Fig. 4).  Some of these methods are still in 

the development process and some are not fully utilized for agricultural soils at the 

national level and have been used and validated mostly at regional or project-level.   An 
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overview of the methods used by all Annex 1 countries in estimating CO2 and N2O 

emissions from agricultural soils is given in Table 2. 

 

Australia  

 

Australia has about 21% forest area and two-thirds of the land is in agricultural and 

pastoral use, of which about 90% is used for grazing livestock (Australian Greenhouse 

Office, 2002a).  Currently about 19% of the total CO2-equivalent GHG emissions in 

Australia comes from the agriculture sector and about 5% come from other land use.  

Emissions from agricultural soils in 2002 show an increase of 29% compared to 1990, 

mainly due to an increase in area under cultivation, increased rates of fertilizer 

application, and increased number of livestock (UNFCCC/NIS, 2004). 

 

Australia has developed a National C Accounting System (NCAS) based on resource 

inventories, field studies, modeling, and remote sensing.   NCAS involves a verified 

model-based accounting system operating at highly disaggregated spatial and temporal 

scales (25m, monthly time steps; Australian Greenhouse Office, 2002b).  Several 

submodels comprise the Full C Accounting Model (FullCAM) for estimating land use 

change emissions.  FullCAM has components that incorporate C exchange between the 

atmosphere and agriculture- and forestry-related activities. Emissions and removals are 

estimated for biomass as well as soil C pools.   
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The five sub-models of the FullCAM include a physiological growth model for forests 

(CAMFor), a C accounting model for cropping and grazing system (CAMAg), a residue 

decomposition model (GENDEC), and the Rothamstead soil C model (Roth-C) (Brack 

and Richards, 2001; Australian Greenhouse Office, 2002b).  The FullCAM model 

provides a linkage between these sub-models. 

 

CAMAg reflects the management impacts on C accumulation and allocates crop biomass 

to various plant product pools and to decomposable and resistant organic residues.  

Change in agricultural soil C is estimated using Roth-C model (Coleman and Jenkinson, 

1995), based on soil type, land use and management history, and residue inputs from 

different cropping systems.  This model has been calibrated against long-term field 

measurements and verified using paired sites (undisturbed vs cleared sites) in areas of 

major land use change; although further measurements from long-term field experiments 

are needed to refine the model (G. Richards, personal communication, 2004).  Since 

CAMFor and CAMAg are both included within the FullCAM, transitional activities such 

as deforestation, afforestation, reforestation, and mixed systems such as agroforestry can 

be represented (Australian Greenhouse Office, 2002b).  In addition, a mathematical 

framework has been developed to incorporate the ability to estimate non-CO2 GHGs 

within the FullCAM model.  This will enable the estimation of non-CO2 emissions from 

forestry (i.e. CH4 from decomposition and burning, N from decomposition, burning, 

fertilization, and soil preparation) and agriculture (i.e. N from fertilizer application, 

animal excrement, soil management, decomposition, and burning; CH4 from 

decomposition and burning) (Australian Greenhouse Office, 2002b).                                                           
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Austria 

 

In Austria, agricultural area is about 41%, and forests occupy about 46% of the total land 

area.  Agricultural area includes arable land, grassland, as well as vineyards and orchards.  

Natural reforestation in former agricultural land, and aforestation activities have 

contributed to the further extention of the country’s forest area within the last few 

decades (UNFCCC/NIS, 2004).   

 

The “Australian Carbon Balance Model” (ACBM) is being developed for full C 

accounting of C stocks in Austria, considering 1990 as the baseline.  The overall model 

covers five national subsystems; agriculture, forestry, energy, production, and waste.  For 

each module, C stocks, flows, processes and control variables have been identified.  The 

model is formulated to estimate the full national C balance, including intersystem C flows 

to show the impact of one action on the other components of the model, and subsequent 

net flux to the atmosphere (Orthofer et al., 2000; Gerzabeck et al., 2003).   

 

Agricultural soil is one main component within the module for agriculture.  Soil C 

dynamics are modeled using a simple approach that divides organic matter into three 

pools based on residence times.  Factors for simulation and calculation of C stocks are 

derived using official soil survey data (Orthofer et al., 2000).  Net emissions (expressed 

in CO2 equivalents) from agricultural soil estimated using the ACBM were 13% lower 

than emission estimates made using the IPCC-GL.  This difference was mainly due to the 
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effect of C sequestration in agricultural products and forest soils and of the net effect 

from C import and export (Gerzabeck et al., 2003).   

 

Soil C estimates from ACBM have not been so far reported in the National inventory 

submission, although C stock changes in Austrian forest soils during 1990- 2010 were 

estimated using this modeling approach (Weiss and Schlamadinger, 2000).  

 

Canada 

 

In Canada about 42% of the country is covered by the forest, and about 7% of the land is 

under agriculture.  About two-thirds of the farmland is used for crops and improved 

pasture (Environment Canada, 2001).   

 

At present, Canada is using the IPCC Tier 1 method to estimate agricultural soil N2O 

emissions, and CO2 emissions and removals from agricultural soils are estimated using 

the Century model that has been calibrated for Canadian conditions (Smith et al., 1997; 

C. Liang, personal communication, 2004).  However, a new National C and Greenhouse-

gas emission Accounting and Verification System for agriculture (NCGAVS) is being 

developed to estimate soil C change and direct N2O emissions from agricultural soils 

(McConkey et al., 2003).  It is a model-based system that uses integrated databases of 

information on land, land management, and land use change.   
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NCGAVS will provide a more detailed country-specific methodology for estimating N2O 

and CO2 emissions/removals from Canadian agricultural soils.  The basic geographic 

units used in NCGAVS are the Soil Landscapes of Canada (SLC) polygons, which are 

mapped at a scale of 1:1,000,000, yielding around 5000 polygons for the entire country.  

Soil C changes and N2O emissions will be estimated for the components within a SLC, so 

that important attributes such as soil organic matter, texture, and topographic effects, etc. 

will be addressed.  Inclusion of topographic effects is an improvement compared to the 

existing inventory methodology.   

 

The initial version of NCGAVS will concentrate on estimating sources/sinks of soil C 

and direct N2O emissions from land-use change, crop- and grazing-land management, 

and revegetation under primary agriculture over a 5-year inventory period.  Since CH4 

emissions from agricultural soils are not a significant source in Canada, it will not be 

included initially. It is expected that NCGAVS will be used for the inventory submission 

in 2006 (C. Liang, personal communication, 2005).   Future versions are planned to have 

more extensive coverage, accounting for all GHG sources and sinks in Canadian 

agriculture.  Since N2O represents the largest GHG source for Canadian soils, further 

efforts to quantify N2O emissions will be a major focus (McConkey et al., 2003). 

 

Germany  

 

In Germany, about 54% of land was under agriculture in 1997, with two-thirds of the area 

used for annual crops.  About 3% of agricultural land is organically farmed. Fertilizer use 
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and livestock are the major sources of agricultural sector GHG emissions of N2O and 

CH4 (BMU, 2002). 

 

Germany has developed a system using two mechanistic models, Denitrification and 

Decomposition (DNDC) (Li et al., 2000) and Photosynthesis and Evapotranspiration- 

Nitrification- Denitrification and Decomposition (PnET-N-DNDC; based on the PnET 

model by Aber et al., 1996) for estimating N2O emissions from agricultural and forest 

soils, respectively (Butterbach-Bahl et al., 2001, 2002, 2004).  These process-based 

models integrate complex interactions among primary drivers, soil environmental factors, 

and biogeochemical reactions.  Input parameters include daily climate data, soil 

properties (organic matter, texture, pH, bulk density), vegetation (crop/ forest type, age), 

and land management practices.  

 

This approach has been tested regionally, and so far modeled N2O emissions have been 

comparable with the estimates derived from using IPCC guidelines. DNDC-based 

estimates at the regional scale were slightly higher (about 10%) compared to the 

estimates based on IPCC default method (Butterbach-Bahl et al., 2002).  Model 

validation is difficult however, due to the scarcity of field measurements over entire years 

or entire regions, as well as the high spatial variability of N2O emissions (Butterbach-

Bahl, 2004).   Although the IPCC methodology has been used in the current and past 

inventory submissions, a national inventory of N2O emissions using the simulation 

modeling approach will be used in future German national inventory submissions ( K. 

Butterbach-Bahl,  personal communication, 2004).  
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Methodology for estimating CO2 emissions from German agricultural soils is still in 

development. CO2 emission from cultivated organic soils is a key category.  Soil C stocks 

for annual and perennial cropland, vineyards, grassland, and fallow land have been 

estimated using remotely-sensed data and soil data; emission factors have been derived 

using a review of about 200 national and international studies (A. Gensior, personal 

communication, 2004). 

 

New Zealand (NZ) 

 

Agriculture is the principal industry in NZ, predominantly as intensive and extensive 

pastoral systems.  Only about 1% of the land area of NZ is devoted to annual cropland.  

49% of total GHG emissions in 2002 were from agriculture, and N2O emissions from 

agricultural soils accounted for 34% of agricultural sector emissions (NZ MfE, 2001; 

UNFCCC/NIS, 2004).   

 

Although soil C stock changes are not currently reported (UNFCCC/NIS, 2004), a soil 

Carbon Monitoring System (CMS) is being developed to account for changes in soil C 

stocks due to land cover changes occurring in the recent past (i.e. conversion of grazing 

land to plantation forestry and to native woody vegetation).  The soil CMS of NZ is based 

on a simple empirical model, similar in concept to the IPCC Tier 1 approach.   This 

accounting system uses three data layers (i.e. soil, climate, and land use), for which 

steady-state soil C stocks are assigned using geo-referenced soil C measurements.   The 

six IPCC recommended soil classes, supplemented by a separate class for podzol soils, 
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are defined and a more detailed breakdown of climatic zones compared to the IPCC 

approach is used (Scott et al., 2002; Tate et al., 2003).  In order to incorporate erosion 

impacts on soil C, an erosivity index (i.e. the product of slope and mean annual 

precipitation) has been included with soil type, climate and land use as the major 

determinants of soil C stocks.  Soil C values for different land cover/land use categories 

have been estimated for each of 18 soil-climate classes (Scott et al., 2002; Tate et al., 

2003).   

 

Advantages over the IPCC default method include a NZ-specific representation of soil 

and climate conditions (e.g. Table 3), measured soil C stocks for climate-soil-land use 

conditions in NZ, and factoring in effects of erosion, which is high in part of the country.  

CMS-based estimates for soil C values were slightly higher for high clay-activity soils in 

cold temperate dry climates and slightly lower for high clay-activity soils in cold 

temperate moist soils, compared to the default IPCC soil C values for native vegetation in 

similar soil/climate categories (Table 3).  For estimation of soil C changes, periodic 

update of national land cover/land use data is essential.  Currently, uncertainty about 

changes in areas under different land cover and limited data on the effects of key land-use 

changes on soil C stocks are the major sources of uncertainties in estimating soil C 

emissions/removals.   

 

A recent research-based effort (employing methods different from those being 

implemented for official national reporting), using models, remote sensing, and field 

data, suggests that soil C stocks in New Zealand are roughly in balance, with some 
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accumulation occurring in grassland and scrub ecosystems and net losses associated with 

soil erosion (Tate et al., 2000; Trotter et al., 2004). 

 

Sweden 

 

In Sweden, more than two-thirds of the country is covered by forests, and agricultural 

land comprises 8% of land area, concentrated in the southern part of the country.  A 

significant proportion (9%) of annual cropland is on cultivated peat soils (histosols) 

(Swedish Ministry of the Environment, 2001; UNFCCC/NIS, 2004).   

 

For estimating soil C budgets, Sweden is developing a simulation-based approach, using 

the Introductory Carbon Balance Model (ICBM) (Andrén and Kätterer, 1997, 2001).   

This two-pool model has been calibrated using long-term field data and has been 

incorporated into a regional framework to enable estimates of soil C emissions/removals 

for national reporting (Andrén et al., 2004). The model is conceptually simple and, with 

suitable input data (i.e. annual agricultural statistics, daily weather data, climate region, 

soil type, and crop type, etc.), it can be run and optimized in a conventional spreadsheet 

program (Andrén et al., 2003, 2004). This model approach is still in the testing phase, and 

currently only the emissions from organic soils are reported in the NIR. 
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United Kingdom (UK) 

 

In the UK, about 47% of the land area is used for intensive crop and pasture production 

while about 30% comprises less intensively managed grazing systems ( Defra, 2001). 

 

Soil C changes are estimated using a matrix of land use change (derived from land 

surveys), linked to a dynamic empirical model of C gain or loss.  The model is 

conceptually similar to the IPCC approach, with the important difference that changes in 

C stocks over time are modeled as non-linear, using an exponential function. Soil C 

changes with time, for a particular land use transition, are estimated as shown in Eq. [3]. 

 

Ct= Cf – (Cf – C0) e-kt   [3] 

Where:  

Ct = C stock at time t (Mg C ha-1)  

C0 = initial C stock (Mg C ha-1)  

Cf = equilibrium C stock under the new land use (Mg C ha-1)  

k = specific rate of C change (year-1) 

t = time period (year). 

 

For example, if the inventory year is 1990 and a base year of 1930 is chosen to represent 

the initial C0 stock, then the total soil C loss or gain from 1930-1990 is estimated using 

Eq. [4]. 
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Where: 

 AT= area under the particular land use transition (ha) 

 

Negative values of X1990 indicate removals (gains) in C, while positive values represent C 

loss. Similarly, the calculation can be made over the interval 1930-1989, as shown in Eq. 

[5]. 
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The net change in C in 1990 is the difference between the estimated values from above  

Eqs. [4] and [5] (i.e. F1990= X1990 -X1989).  

 

To apply the model, data is required to estimate the change in equilibrium C stocks from 

the initial to the final land use during a transition.  These are calculated for each land use 

category, as area-weighted averages by major soil types, by countries (i.e. Scotland, 

England, and Wales) within the UK.  Mean changes in equilibrium soil C stocks are 

calculated as shown in Eq. [6]. 
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Where: 

i= initial land use; j= new land use; c= country; s= soil group  

Csijc = change in equilibrium soil C for a specific land use transition 

 Lsijc = land area by soil type for a specific land use transition. 

 

The rate of C change depends on the type of land use transition.  For a transition where C 

is lost, a ‘fast’ specific rate constant (i.e. ‘k’) is applied, and for transitions where C is 

gained, a ‘slow’ specific rate is applied; time ranges relevant to complete transitions were 

selected using a literature search on measured rates of soil C, and expert judgment 

(UNFCCC/NIS, 2004; R. Milne, personal communication, 2004).  Land use change 

matrices for the periods 1947-1980 and 1984-1990 have been used in applications to date 

(UNFCCC/NIS, 2004).  The C stock changes reported for the NIR (UNFCCC/NIS, 2004) 

using this methodology, include means and estimates of uncertainty based on a Monte-

Carlo approach, computed separately for England, Scotland, and Wales. For Northern 

Ireland, C stock estimates have been made using an IPCC-based method, as currently no 

land-use change matrix is available for the country (UNFCCC/NIS, 2004).   

 

The DNDC model has also been used to estimate N2O emissions from UK agricultural 

soils.  UK-specific, county-level soil characteristics, daily climate, crops, livestock, and 

farming practices had been used as input data. Model validation had been done using 

available, but limited, field data.  To be consistent with the IPCC approach, emission 

factors calculated using model estimates, had been used along with the activity data for 

different source categories to estimate N2O emissions.  DNDC- based N2O estimates 
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from indirect emissions, and agricultural practices (excluding animal waste during 

storage), were about 40% lower than the estimates made using the IPCC default method 

(Brown et al., 2002).   

 

United States (US) 

 

In the US, arable land covers 19% of total land area with an additional 6% in intensive 

pasture and 21% in rangeland.  Although cropland area has remained relatively stable 

over the last century (Lal et al., 1998), recent trends show a 12% decline in cropland over 

the past 20 years and other significant changes in land use and management continue to 

occur (NRI, 2002).  Important trends affecting agricultural soils include set-aside of 

marginal lands in conservation reserves, reductions in tillage intensity, and increases in 

cropping intensity (Ogle et al., 2003a). 

 

Currently, the US estimates soil C stock changes using a modified version of the IPCC 

default methodology with US-specific reference C stocks and stock change factors (Ogle 

et al., 2003a). Activity data are stratified by IPCC-defined climate and soil types.  A 

comprehensive national database, the National Resources Inventory (NRI), is the primary 

source of land use and management data.  NRI records land use, crop type, and other 

information (e.g. irrigation, pasture improvement, soil type) on more than 400,000 

permanent inventory points on agricultural land. Surveys have been conducted on 5-year 

intervals (1982-1997), although currently the NRI is transitioning to an annual collection 

of data on a subset of inventory points.  Supplemental data including county-level tillage 



 

 43
 

practices (CTIC, 1998), fertilizer use (ERS, 2003), and manure production (Edmonds et 

al., 2003), are included in the inventory.  A Monte-Carlo approach is used to estimate 

95% confidence intervals of stock changes for each climate-soil combination (Ogle et al. 

2003 a, b).   

 

A more advanced simulation approach using the Century model is being developed to 

estimate soil C emissions/removals.  Annual changes are computed dynamically as a 

function of inputs of C to soil (e.g., crop residues, manure) and C emissions from organic 

matter decomposition, which are governed by climate and soil factors as well as 

management practices.  The model simulates all major field crops (maize, wheat and 

other small grains, soybean, sorghum, cotton) as well as hay and pasture (grass, alfalfa, 

clover).  The same sources of input data as in the IPCC-based methodology are used for 

management variables, included tillage, fertilization, irrigation, drainage, and manure 

addition.  Preliminary results predict that cropland mineral soils are a net sink of about  

21 Tg yr-1, which is higher than the estimates (11 Tg yr-1) using the IPCC approach (US 

EPA, 2004).  Both methods attribute C gains  to conservation set-aside and reduced 

tillage, but the simulation approach also accounts for the long-term trend of increasing 

crop productivity, which is not captured by the IPCC method.   

 

Soil N2O emissions were previously estimated using the IPCC Tier 1 methodology, with 

activity data derived from county-level databases on mineral fertilizer use, animal manure 

use, crop residues and N-fixing crops, sewage sludge application, and grazing animals 

(US EPA, 2004).   However, the US has developed a simulation-based approach using 
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the DAYCENT model (Parton et al., 1998; DelGrosso et al., 2001) to estimate N2O 

emissions from agricultural soils.  This approach has advantages over the empirical IPCC 

method in that it can better capture the interaction between different management 

conditions, including fertilization and manuring practices, soils, and varying climate.  A 

major challenge is deriving activity data (such as synthetic fertilizer and manure nitrogen 

inputs) at a suitable spatial scale, since existing fertilizer use databases are aggregated at 

the country-level. Preliminary estimates using the dynamic method are 10-15% lower 

than with the IPCC method and with greater interannual variability, due to the inclusion 

of weather effects in the simulation approach (S. DelGrosso, personal communication, 

2005).  The largest factor accounting for the difference is lower emissions from N-fixing 

crops estimated by DAYCENT compared with the IPCC default method. 

 

DISCUSSION AND CONCLUSION 

 

Agricultural soils are a significant source of N2O emissions for all Annex 1 countries and 

an important CO2 source/sink category for many of them.  However, compared to some 

other sectors of country GHG reporting, reporting of soil emissions and removals is, at 

present, generally less comprehensive and less uniformly applied across countries. Even 

for Annex1 countries, Tier 1 methods and default emission factors are the most widely 

used alternatives (Figures 5 and 6).   
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The relatively large percentage of countries not reporting soil emissions/removals and the 

predominance of Tier 1 approaches among countries that do report are likely due to two 

main factors.  First, the activity data that are required, even for Tier 1 methods, are more 

difficult to obtain compared to other statistics such as those on energy consumption.  For 

example, while statistics on country-level mineral fertilizer use are generally available, 

estimating N addition (and resultant N2O flux) from sources such as animal manure and 

sewage sludge are more uncertain.  Secondly the methods themselves, particularly for 

soil CO2 flux, are arguably more complex and require information from several sources.  

For estimating CO2 emissions from mineral soils, the Tier 1 IPCC method requires some 

level of stratification of land area according to climate and soil type, as well as additional 

information on land use and management changes over time.  An additional reason which 

could account for the low reporting of soil CO2 emissions/removals (Figure 6) is that 

many Annex1 countries may not consider this to be a ‘key source’ category.  However, 

according to IPCC recommendations, determination of key sources should be based on an 

initial (e.g. Tier 1) inventory estimate.  Hence as more countries strive to adopt Good 

Practice Guidance, the frequency of reporting for all soil-related categories should 

increase. 

 

Despite these challenges, a number of countries have successfully implemented soil 

emission inventories and several are in the process of developing advanced, 

computational and data intensive methods, tailored to national circumstances (Tier 3).  
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The IPCC default approach has the advantages of having a relatively simple structure as 

well as providing default emission and stock change factors, so that the main requirement 

for individual countries is to obtain suitable activity data.  To facilitate this, the methods 

were designed to work with globally available data sets, at a minimum.  However, with 

simplification there are tradeoffs in the form of increased uncertainty, particularly with 

the application of global default values. Inherently, globally averaged emission factors 

will be subject to error when applied to a particular country or region having conditions 

different than the global mean.  In addition, global defaults for soil processes are likely 

biased in that most of the data used in their derivation are from temperate locations, 

where the preponderance of field research has been done.  Hence, tropical conditions are 

often underrepresented.  Finally, the use of highly aggregated data (e.g. national totals for 

soil N input sources) results in a loss of information about sub-regional (within country) 

differences in sources and sinks of greenhouse gases.   

 

For both soil N2O and CO2, the process controlling emissions and removals are highly 

influenced by spatially and temporally varying conditions such as temperature, soil 

moisture, and soil chemical and physical properties.  These differences are unlikely to be 

adequately captured when national-level aggregate data are used.  Additional limitations 

to the IPCC method for mineral soil C changes include the lack of inclusion of soil 

erosion and transport and restriction of C stock changes to the top 30 cm of soil.   For 

organic soils, the data available for estimation of emission factors is quite limited and 

hence uncertainty is higher than for the analogous stock change factors for mineral soils 

(IPCC, 2003). 
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Country-specific approaches are being rapidly developed to overcome some of these 

deficiencies and improve estimates of soil-derived emissions.  For soil C estimation, 

elaboration of the IPCC method using country-specific stock change and reference C 

stocks, along with other modifications, have been implemented in NZ and the US.  The 

UK approach is functionally similar, but includes a non-linear change with time from an 

initial to a new equilibrium C stock (whereas the IPCC default assumes a linear 

transition).  Fully dynamic approaches employing simulation models and detailed activity 

data are being developed in Australia, Austria, Canada, Sweden, and the US. 

 

For N2O, nearly all countries continue to utilize the IPCC base methodology, although 

dynamic simulation approaches have been implemented in Germany and the US, and are 

under development in Australia (Australian Greenhouse Office, 2002b) and Canada. 

 

At present, few countries have estimated inventories using both advanced Tier 3 methods 

and simpler (Tier 1 or Tier 2) IPCC-default methods.  Hence it is difficult to make a 

general assessment of the adequacy of the more simple IPCC approach compared to more 

sophisticated inventories.  Austria reported a difference of 13% in soil C 

emission/removals between simple and advanced inventory methods, and N2O emissions 

in the US inventory differed by 10-15% comparing IPCC default and simulation model-

based approaches.  Soil C values in New Zealand estimated using CMS were slightly 

higher or lower compared to IPCC default C values, for different soil/climate categories.  

In the UK, DNDC- based N2O estimates were 40% lower compared to the estimates from 
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IPCC default method.  Although advanced methodologies have been developed for 

inventorying soil C stock changes in Australia, Canada, Sweden, and UK, so far no study 

has been done on how those estimates compare with the estimates from the IPCC 

method.   

 

The higher Tier methods developed by certain Annex 1 countries are designed to be more 

representative of country-specific soil, climate, and management conditions, and in most 

cases, these methods are applied at a finer spatial scale than is used for a Tier 1 approach, 

Hence, the inventory results obtained are expected to be more accurate and with lesser 

uncertainty than when using the default method.  However, at present there have been 

few instances of rigorous uncertainty assessments applied to either IPCC default (Tier 1) 

inventories or Tier 3 country-specific methods.  Few countries have measurement 

networks, which can provide independent validation inventory estimates (Ogle and 

Paustian, 2005).   Hence a ‘head-to-head’ comparison of different inventory methods and 

Tier levels, with regard to accuracy and uncertainty, is not currently possible.  Hopefully 

as more countries develop and implement more advanced soil GHG emission/removal 

inventories, supplementary estimates will be made using IPCC methods to provide an 

evaluation of the reliability of continuing the more general IPCC approaches, which are 

likely to remain the dominant method for most developing countries, at least for the near 

future. 
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Table 1.  N2O emissions (Gg of CO2 equivalent) from Agricultural soils in Annex 1 
countries   (Compiled using the data from the UNFCCC Greenhouse Gas Inventory 
Database). NR = Not reported. 
 

2000 Country  1990 
Agricultural
Soils 

Agricultural 
soils 

National total % Agricultural 
soils vs national 
total 

Australia  14,669 18,077 31,906 56.66 
Austria  1,024 987 2,515 39.24 
Belarus  NR NR NR NR 
Belgium  4,910 4,891 13,422 36.44 
Bulgaria*  16,712 NR NR NR 
Canada  27,364 33,654 53,938 62.39 
Croatia*  2,361 NR NR NR 
Czech Republic  7,568 4,732 8,175 57.88 
Denmark  9,797 7,853 9,083 86.46 
Estonia  952 366 414 88.41 
European 
Community  

198,043 189,726 338,111 56.11 

Finland  4,373 3,496 7,183 48.67 
France  51,975 50,571 76,891 65.77 
Germany  30,926 27,351 60,080 45.52 
Greece  6,501 6,370 11,009 57.86 
Hungary  1,414 11,339 12,698 89.30 
Iceland  70 69 124 55.65 
Ireland  6,552 6,666 9,725 68.54 
Italy  20,337 20,554 43,176 47.61 
Japan  9,607 8,055 36,870 21.85 
Latvia  2,998 952 1,288 73.91 
Liechtenstein  NR NR NR NR 
Lithuania  NR NR NR NR 
Luxembourg*  147 NR 94 NR  
Monaco  NR NR NR NR 
Netherlands  6,650 7,352 16,980 43.30 
New Zealand  11,454 12,100 12,654 95.62 
Norway  2,623 2,535 5,154 49.19 
Poland  13,358 10,712 23,896 44.83 
Portugal  4,791 4,634 8,258 56.12 
Romania*  7,766 NR NR NR 
Russian Federation  NR NR NR NR 
Slovakia  4,154 2,181 3,085 70.70 
Slovenia*  1,416 NR NR NR 
Spain  16,023 18,570 30,497 60.89 
Sweden  3,792 3,603 6,916 52.10 
Switzerland  2,404 2,165 3,619 59.82 
Ukraine  NR NR NR NR 
United Kingdom  30,353 26,829 43,878 61.14 
USA  267,088 297,561 425,345 69.96 
Total 761,770 783,951 1,296,892 60.45 

*- excluded in calculating the total of the columns, as one or more estimates are missing for these countries
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Table 2.  Methodologies used by Annex 1 countries for agricultural soil emission estimation according to the latest submissions of 
National Inventory Report (NIR) and Common Reporting Format (CRF), in summary. For N2O emissions, methods and emission 
factors have been classified based on the major methodology being used.  For CO2 emissions, methods and emission factors are given 
in the order:  mineral soil/ organic soil/ liming. 
 
Country N2O emissions CO2 emissions/ removals 

 Methods Emission 
Factor 

Methods Emission 
Factor 

Additional Remarks 

Australia  T2 CS T3/NE/NE CS/NE/NE N2O – Australian-specific methods and emission factors.  Methodology 
incorporates increased emissions due to soil disturbance caused by cropping 
practices; soil disturbance is a country-specific category that combines emissions 
from several IPCC categories. 
CO2- Only stock change due to pasture improvement and minimum tillage (with 
methods and emission factor given as country-specific) given in the CRF under 
removals from mineral soils ((UNFCCC/NIS, 2004). 

Austria  T1 D NE NE No official reporting of soil C stock changes; estimates based on Tier 3 
methodology are planned for future (UNFCCC/NIS, 2004). 

Belarus  NR NR NR NR N2O Estimates given although no details on specific methods or emission factors 
provided.  No information on estimates of CO2 from agricultural soils  provided 
in either NIR or CRF ( UNFCCC/NIS, 2004).   

Belgium  T1 D NE NE N2O- calculated using IPCC methodology with country- or region- specific data.   
A national study going on regarding CO2  estimation (UNFCCC/NIS, 2004) 

Bulgaria  T1 D NE NE CO2- not estimated as country specific data are lacking and certain activities not 
taking place (UNFCCC/NIS, 2004).   

Canada  T1 D T3/T1/T1 CS/D/D C stocks- Century model calibrated to Canadian conditions used (Smith et al. 
1997).  CO2 emission from liming estimated using stoichiometric relationships 
relevant to the breakdown of dolomite and limestone into CO2 and other minerals 
(UNFCCC/NIS, 2004). 

Croatia  NR NR NR NR N2O estimates are given, but no sufficient details on the specific method or 
emission factor available in either NIR or CRF (UNFCCC/NIS, 2004). CO2- not 
reported; data for stock changes from cultivation of mineral soil not well 
documented (UNFCCC/NIS, 2004).   

Czech Republic  T1 D NE NE N2O- A complex methodology that incorporates agricultural soils and other sub 
sectors, based on recent studies. Methods for CO2 under GPG are still being 
developed (UNFCCC/NIS, 2004). 

Denmark  T2 CS NE NE N2O- Methods include IPCC T1b (e.g. emission from N-fixing crops) and models 
(e.g. emission from N leaching and runoff) relevant to Danish conditions 
(UNFCCC/NIS, 2004) .   
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Estonia  T1 D T1/NE/NE D/NE/NE CO2- Stock changes in mineral soils only; T1a method and default emission 
factors used (UNFCCC/NIS, 2004). 

Finland T1 D T1/T1/T1 D/D,CS/D Estimated based on activity data from annual agricultural statistics, publications, 
databases and agricultural experts. Both IPCC default and national values for 
emission factors and other parameters used (UNFCCC/NIS, 2004). 

France  C/ T2 
 

D,CS 
 

T2/NE/T1 CS/NE/D Methodology for N2O emissions available in a special document, i.e. CITEPA 
("Méthodologie utilisée pour les inventaires de NH3 et de N2O provenant des 
activités agricoles : évolution et perspectives") (UNFCCC/NIS, 2003).  French 
methodology does not consider C emission/ uptake in relation to the nature of 
different soils; thus CO2 reported for ‘all soil types’ under mineral soils 
(UNFCCC/NIS, 2004).  

Germany  C/T2 
 

D,CS NE/NE/T2 NE/NE/CS CO2 from liming estimated using a country-specific emission factor 
(UNFCCC/NIS, 2004).   

Greece  T1 D T2/NO/NO CS/NO/NO Estimates of mineral soil C stock changes are not officially accepted due to lack 
of readily available data (estimates of stock changes in mineral soils for 
afforestation of agricultural soils given).  CO2 from cultivation of organic soil and 
liming are given as not occurring. Good Practice Guidance (GPG) followed, but 
currently not fully implemented for LULUCF sector (UNFCCC/NIS, 2004).   

Hungary  T2 CS T1/NO/T2 D/NO/CS N2O- IPCC method with activity data and emission factors derived using 
agricultural statistics; CO2 from mineral soils and liming estimated; liming 
involves limestone and a lower emission factor compared to the IPCC default has 
been used (UNFCCC/NIS, 2004). 

Iceland  T1 D NR NR  
Ireland  T1 D NR/NR/T1 NR/NR/D N2O- GPG and a country-specific method used in estimating N2O emissions from 

agricultural soils; Tier 1b used to estimate N inputs from N fixing crops and crop 
residues returned to the soil; Development of T2 methods for N2O in progress.  
CO2- Emission from mineral soils and organic soils not reported, pending the 
results of major research in this area (UNFCCC/NIS, 2004).  

Italy  T1 D T1/NR/NR D/NR/NR CO2 for mineral soils estimated, with default IPCC emission factors for base 
factor, tillage and input factors.  National expert evaluations used for the amount 
of organic carbon in soil (UNFCCC/NIS, 2004).  

Japan  T2 CS NE NE  
Latvia  T1 D NE/T1/T1 NE/D/D N2O- T1 method with IPCC default, and national emission factors and 

parameters; activity data from agricultural statistics and agricultural experts. 
CO2- No estimation for mineral soils, as data are not available.(UNFCCC/NIS, 
2004). 

Liechtenstein      No submission. 
Lithuania  T1 D NE/T1/NE NE/D/NE CO2 from organic soil (upland crops) estimated (UNFCCC/NIS, 2004).  
Luxembourg  NR NR NR NR  
Monaco  NO NO NO NO  
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Netherlands  T2 CS NE NE N2O- Based on methods described in the N2O background document by Kroeze 
(1994, as cited in RIVM, 2002).  Under indirect N2O emissions, ‘Background 
agricultural soils’ reported that include N2O emissions from cultivation of 
histosols and emissions from manure and fertilizer applications done in the past, 
to reflect the long term emission effects of past agricultural practices 
(UNFCCC/NIS, 2003,  2004). 

New Zealand  T1 D,CS NR/NR/T2 NR/NR/CS N2O- A country-specific emission factor has been used for emissions from animal  
production.  CO2 emission from liming estimated, with a lower C conversion  
factor compared to the default.  (NRI and UNFCCC/NIS, 2004).    

Norway  T1 D NR/NR/T2 NR/NR/CS CO2 from liming estimated using data from Norwegian Agricultural Inspection 
service, and a country-specific emission factor (which is equivalent to the 
default) (UNFCCC/NIS, 2004).   

Poland  T2 CS T1/NR/NR D/NR/NR Follows the revised IPCC Guidelines with application of specific (Tier 2/3), and 
simple methods (in few cases) (UNFCCC/NIS, 2003, ,2004). 

Portugal  T1 D NE NE  
Romania  T1 D NE NE CO2 not estimated due to the lack of data (UNFCCC/NIS, 2004). 
Russian 
Federation  

    No submission. 

Slovakia T1 D NO NO  
Slovenia  T1 D T1/NE/T1 D/NE/D CO2 from only mineral soils and liming estimated (UNFCCC/NIS, 2004).   
Spain  T1 D NE/NO/NO NE/NO/NO N2O- IPCC guidelines followed; activity parameters and variables based on 

national data, and default emission factors.  CO2 not estimated due to lack of 
reliable data (UNFCCC/NIS, 2004).  

Sweden  T2 CS NR/T2/T1 NR/CS/D N2O - Activity data are mainly based on official Swedish statistics; default and 
national emission factors used for different sub sources in Direct N2O emissions, 
and emissions from animal production.  CO2- Removal from mineral soils not 
reported; for emissions from organic soils, a national emission factor used.  IPCC 
methodology and default emission factors used for emission from liming 
(UNFCCC/NIS, 2004). 

Switzerland  T2 CS NR/T2/NR NR/CS/NR N2O- Estimated using IULIA, an IPCC-derived national method that uses default 
emission factors, but makes adjustments in the source categories, appropriating 
the conditions in Switzerland; both default and country specific emission factors 
used for estimating emission from sub source categories.  CO2- cultivated organic 
soils only (UNFCCC/NIS, 2004).   

Ukraine       
United Kingdom  T1 D T3/T2/T2 CS/CS/CS CO2 from application of limestone, chalk and dolomite to agricultural soils 

estimated using emission factors based on the stoichiometry of the reaction, 
assuming pure limestone and dolomite (UNFCCC/NIS, 2004).   
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United States of 
America  

T1 D T2/T2/T1 CS/CS/D N2O- Revised IPCC methodology and national methodologies.  CO2 from all 
three source categories (mineral soils, organic soils and liming) estimated.  IPCC 
methodology with continued improvements being used to estimate C stocks 
(UNFCCC/NIS, 2004).   

Non-Annex 1 
countries 

    Emissions (sources or sinks) from agricultural soils rarely recorded; IPCC default 
method is mostly  used in the recorded instances. 

Note: Under Methods: T1- IPCC Tier1, T2- IPCC Tier2 (i.e. IPCC default method and country specific emission factor/s), T3- Country specific, C- CORINAIR; 

under emission factors: D- IPCC Default, CS- Country Specific; 

NO- Not Occurring; NE- Not Estimated; NR- Not Reported; 

(Sources: Latest National Inventory Reports (NIR)s/ Common Reporting Format (CRFs) and information obtained by contacting responsible country offices) 



 

 61
 

Table 3.  Organic C values derived for arable soils in New Zealand using the soil Carbon 
Monitoring System (CMS), compared with IPCC GPG/default soil C values (Mg C ha-1, 
0-30cm) for native vegetation in similar soil/climate categories.  
 
IPCC soil/ climate IPCC  CMS 
High Clay Activity/ Cold temp dry 50 67 
High Clay Activity / Cold temp 
moist 

95 84 

Aquic 87 82 
Volcanic 70-130 99 
(Source: Scott et al., 2002 ; IPCC GPG, 2003)  
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Figure 1.  Percent contribution of agricultural sector greenhouse gas emissions to 
increased radiative forcing attributed to anthropogenic enhancement of the greenhouse 
effect  (IPCC, 1996).  
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Agricultural soil emissions as a fraction of total N2O emissions by 
Annex 1 countries
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Figure 2. N2O emission from agricultural soils as a fraction of cumulative N2O emissions 
by Annex 1 countries from 1990- 2000. 
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N2O emissions by US and total Annex 1 countries
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Figure 3.  N2O emission from agricultural soils by US and all Annex 1 countries from 
1990- 2000. 
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Figure 4.  Relative impact of agricultural soils to the overall agricultural sector, in terms 
of Global Warming Potential, (computed as absolute values for both sinks and sources 
combined for CO2, N2O and CH4), as a percentage of the total agricultural sector 
emissions for some selected Annex 1 countries. ‘Other’ emissions represent combined 
N2O and CH4 emissions from burning of savannas and crop residues and CH4 from rice. 
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 Figure 5.  Methods used for estimating N2O emissions by Annex 1 countries based on 
the NIRs and CRFs submitted in 2004 (T1- Tier1; T2- Tier2, NR/NO- Not Reported or 
Not Occurring). 
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Figure 6.  Methods used for estimating CO2 emissions by Annex 1 countries based on the 
NIRs and CRFs submitted in 2004.  (mineral- stock changes in C from mineral soils, 
organic- emissions from cultivated organic soils, liming- emissions due to liming, T1- 
Tier1; T2- Tier2, T2- Tier 3, NR/NO- Not Reported or Not Occurring). 
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CHAPTER 3 

 

USE OF AVHRR TIME SERIES FOR ESTIMATING MISSING CROP BIOMASS 
VALUES DERIVED FROM THE NATIONAL AGRICULTURAL STATISTICS 

SURVEY 
 

ABSTRACT 

 

Carbon input from crop residues is an important determinant of the carbon balance in 

agricultural soil.  Crop residue production can be estimated from biomass and crop yield 

data from ground-based surveys.  However, survey data may be unavailable for certain 

time periods and/or locations.  Remotely sensed data is collected on a regular schedule 

and may also provide more spatially resolved data compared with crop yield surveys.  

We analyzed the relationship between composited biweekly AVHRR NDVI and crop 

aboveground biomass, using biomass estimated from county-level yield data reported by 

NASS (National Agricultural Statistics Survey) for three crops (corn, soybean, and oats), 

during the years 1992, 1997, and 2002.  The aim of the study was exploring relationships 

between NDVI and crop biomass for potential future use in filling the gaps in counties 

where no NASS-reported yields are available.  Aboveground biomass was estimated from 

the Pathfinder biweekly dataset of NDVI values, using canonical correlation analyses 

followed by best subset multiple regression incorporating canonical variates from NDVI 
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variables.  Cross validation of the model estimates was done by randomly splitting the 

full dataset into training and application subsets, simulating a 10% to 40% range of 

percent missing values. NDVI and biomass values of the major crops in Iowa during a  

given year were well correlated, and the estimated values were very close to the observed 

values, with < 5% relative error and R2 values > 0.8 in most cases.  Using the available 

(training) data from a single year or a combination of years to derive models for filling 

the missing (i.e. validation) data within the same time period, yielded mean estimated 

biomass values with less than 1% relative error and bias.  However, applying the models 

derived using the data from any single year (or a combination of years), on a different 

year with missing data was less appropriate since it yielded low R2 values for the 

relationships between biomass and NDVI, although the mean residuals were low.  Thus 

multiple regression analyses using biomass and NDVI canonical variates were found to 

be a suitable approach in predicting missing biomass for subsequent estimation of crop 

residue carbon inputs, when the training data and validation data are from the same time 

period. 

 

INTRODUCTION 

 

The use of remote sensing for crop forecasting goes back to the early 1970's (reviewed in 

MacDonald & Hall, 1980).  Since then, agricultural agencies in various countries (e.g., 

Canada, Hungary, and US) have been using sensors such as the National Oceanic and 

Atmospheric Administration Advanced Very High Resolution Radiometer (NOAA 
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AVHRR) and Landsat imagery to forecast crop yields and crop conditions (Allen et al., 

2002; Csornai et al., 2002; Reichert & Cassey, 2002)     

 

Several studies have used multispectral and hyperspectral data for spatially explicit crop 

forecasting and yield estimation.   Many use the Normalized Difference Vegetation Index 

(NDVI) to estimate biomass (Lozano-Garcia et al., 1991; Hansen and Schjoerring, 2003) 

and crop yields (Tucker et al., 1983,1985; Quarmby, 1993; Senay et al., 2000; Yang et 

al., 2000; Doraiswamy et al., 2001, 2003, 2004, 2005; Hill and Donald, 2003; Knudby, 

2004); these studies were mostly conducted at field scale.  Certain studies have used 

integrated NDVI over the crop growth period too correlate NDVI and biomass (e.g., 

Tucker et al., 1983, 1985; Quarmby, 1993).  NDVI is a vegetation index that ranges 

between -1 and +1, and is the difference between near infrared and red channels 

normalized by their sum (i.e. NDVI= (NIR- R)/(NIR+ R).  Increasing positive values 

indicate increasing green vegetation, and negative values indicate non-vegetated surface 

features such as water, ice, snow, clouds, etc.  The relationship between vegetation 

indices such as NDVI and biomass depends on the relationship between the vegetation 

index and Leaf Area Index (LAI) and the relationship between LAI and biomass.  

According to Curran (1981), NDVI is directly related to biomass when biomass is 

linearly correlated with LAI. In comparing several vegetation indices for plants in salt 

marshes, Modenese et al. (2005) found NDVI to give the highest correlation with 

aboveground biomass.  Currently, the National Agricultural Statistics Service (NASS) of 

the US Department of Agriculture (USDA) uses biweekly composite NDVI images from 

AVHRR to monitor crop condition, and for crop forecasting, while Landsat imagery is 
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mainly used to estimate crop acreage at the county level, under its Cropland Data Layer 

Program.   

 

Our study was carried out as part of an effort to assess the carbon (C) dynamics of 

agricultural soils in the conterminous U.S.  Crop residues are the main component of C 

inputs to agricultural soils, and include about 50-60% of the total aboveground crop 

biomass.  Crop yields can be used to estimate above and below ground biomass (and 

hence residue C inputs) based on allometric relationships for different crops (Buvanovsky 

and Wagner 1986; Prince et al., 2001; Campbell and Jong, 2003; Williams and Paustian, 

submitted).  In our main study we considered a 16- year period from 1982 to 1997 during 

which digitial databases were available from both NASS (annual data) and Census of 

Agriculture (Ag Census; data reported every 5 years), although Ag Census data were not 

used in this study.  One limitation of using the yield data reported by NASSis missing 

data for certain years in certain counties.  Therefore we explored the potential use of 

remote sensing in estimating crop aboveground biomass in those counties where there is 

no yield information, using county-level crop production in Iowa as a test bed.   

 

 
MATERIALS AND METHODS 

 
 

Remotely sensed data used in this study included biweekly AVHRR NDVI images from 

1992,1997, and 2002 (corrected for cloud-contaminated pixels), and the 1992 National 

Land Cover Dataset (NLCD) produced by the US Geological Survey (USGS) using 

Landsat images.  Annual yield data reported by NASS for 1992,1997, and 2002 were 
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used as the ground data for estimating aboveground biomass; these years were chosen as 

the most recent years that both NASS and Ag Census have reported yields.  The state of 

Iowa was chosen for the study, since it is one of the crop states in the US where NASS 

has excellent reporting of yields and acreage without missing data, thus making it a good 

place to observe relationships between crop aboveground biomass and NDVI.   

 

NOAA AVHRR biweekly NDVI images (1 km resolution) of the conterminous U.S. 

were obtained from the Pathfinder dataset for the years 1992, 1997, and 2002 (available 

at ftp://data.nodc.noaa.gov/pub/data.nodc/pathfinder). For each of the three years, images 

collected during the growing season (beginning of April to end of October) were 

combined as bands within a single multi temporal image. A county map of the U.S. was 

used to get the county boundaries and extract composite NDVI images for Iowa.  The 

NLCD coverage for Iowa was recoded to exclude non-crop areas and mask the composite 

NDVI images from the three years. The cropland areas selected consisted of the NLCD 

categories for small grains (i.e. oats in Iowa) and row crops (corn and soybean).  Since 

the NLCD coverage with crop layers had 30 m resolution, pixels from NLCD crop layers 

were aggregated to 1000m resolution for masking the NDVI images.  If cropland area in 

the combined NLCD pixels were >75% annual cropland, the entire pixel was classified as 

annual cropland, otherwise the combined pixel was classified as non-cropland.  Average 

biweekly NDVI pixel values (from the separate biweekly layers of the composite image) 

were then calculated for each county.  Image processing was performed using Erdas 

Imagine 8.6 (Leica Geosystems) and ArcGIS 8.1 (ESRI).    

 

ftp://data.nodc.noaa.gov/pub/data.nodc/pathfinder
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NASS reports annual county-level yields by extrapolating yield data collected from a 

representative sample of farms in each country.  Crop yields and areas for the years 1992, 

1997, and 2002 reported by NASS (available at 

http://www.nass.usda.gov/Data_and_Statistics/index.asp) were used to estimate percent 

crop area and aboveground biomass.  In Iowa, the major crops in all years (1992, 1997, 

and 2002) were corn (Zea mays L.) and soybean (Glycine max L.); oats (Avena sativa L.) 

was also considered in this study as a third major crop.  For each county, the percentage 

of the county’s total area occupied by any of the three crops, and the percentage of each 

crop within the total annual crop area were considered.   

 

Aboveground crop biomass was calculated using the county-level yield data reported by 

NASS, and allometric equations relating grain yield to biomass for each crop (Williams 

and Paustian, submitted).  Crop yields were corrected for moisture content, and converted 

to biomass of yield dry matter, before applying the crop allometric equations to estimate 

total aboveground biomass for comparing with NDVI values.   

 

The range of dependent and independent variables used and the basis for selection 

of the methodology 

 
 
Since the aim of the study was to derive general relationships between remotely sensed 

data and crop biomass estimated from yield statistics, the following crop variables were 

considered as the dependent variables:  

http://www.usda.gov/nass/pubs/histdata.htm
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a. Mean aboveground biomass per hectare of each crop ([C,S,O]AGBM kg ha-1 

,where C,S,O stand for corn, soybean and oats)  

b. Area-weighted biomass (AWBM kg ha-1; the sum of the aboveground biomass 

of the crops, weighted by their area fraction ) 

b. i.e. AWBM= )],,[*],,([ AFOSCAGBMOSC∑ , where AF is the area of the 

particular crop as a fraction of the total crop area 

 

Area-weighted biomass from the three crops was included assuming it might match better 

with the NDVI signal at pixel level, as it represents the mixed-crop biomass per hectare.   

Biomass data for the above variables were estimated for three different years (i.e., 1992, 

1997, and 2002).   
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The pixel values for two-week periods during the growing season of 1992, 1997, and 

2002 (Table 1) were considered as independent variables.  Since there were slight 

differences in the beginning and end dates of the biweekly time intervals in the three 

years, biweekly periods of the growing season in 1997 and 2002 were matched with the 

corresponding 1992 periods that had the greatest date overlap for the analyses and 

interpretation of the results.  

 

Initial analyses of the data showed significant correlations between temporally adjacent 

NDVI values, such that the values from different time periods cannot be treated as 

independent (i.e. they exhibit multicollinearity).  To address the problem of 

multicollinearity, we used canonical correlation analyses to model crop biomass as a 

function of NDVI.     

 

Canonical correlation analyses 

 

Canonical correlation analysis (CCA) is a statistical approach that summarizes multiple 

variables from two datasets as pairs of canonical variates. Although CCA treats both sets 

of variables identically, it is convenient to label one dataset independent and the other 

dependant, in this case these are the remotely sensing NDVI values and crop biomass 

values, respectively. Pairs of canonical variates are created as linear combinations of the 

original variables in each datasets. CCA maximizes the correlation between linear 

combinations of variables from one set with linear combinations of variables from 

another set. The advantage of CCA is that it quantifies the redundancy in each set of 
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variables. This, in turn, allows us to analyze both X and Y variables in terms of their 

relationships to other variables within their own dataset and to variables in the other 

dataset. 

 

In this CCA analysis, monthly NDVI values were considered as one set of variables, and 

county-level corn aboveground biomass (CAGBM), soybean aboveground biomass 

(SAGBM), oats aboveground biomass (OAGBM), and area weighted biomass (AWBM) 

were considered as a second set of variables. One advantage of CCA is it eliminates the 

multicollinearity associated with both the biweekly NDVI values and the crop biomass 

values. It also provides more interpretable results, as the patterns of correlation within 

and between datasets are reduced to a smaller number of variates that are ranked by their 

importance in explaining variance in each dataset. As an example, we could have used 

separate multiple regression analyses to predict aboveground biomass for corn and 

soybean from NDVI values. However, doing so would obscure the fact that corn and 

soybean aboveground biomass co-vary due to two effects: the limitation on total area of 

cropland in each county, and the fact that good years for corn are generally good years 

for soybean as well. In addition, the coefficients for the resulting regression equations 

would be difficult to interpret, as they would combine numerous effects into a single 

linear combination of the independent variables, whereas CCA separates out effects into 

separate canonical variates.  

 

Best subset multiple regression analyses were performed to estimate each dependant 

variable from the canonical variates derived from the NDVI dataset.  To obtain the model 
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with the highest predictive power, the best subset of the entire set of independent 

variables was chosen based on Mallows’ Cp value (a measure of model fit) and R2 values 

for each subset of the independent variables; i.e., the subset that gave the lowest Cp (with 

Cp value less than or equal to 1, when p= number of parameters), and highest R2 was 

chosen as the best.  

 

These analyses were performed using datasets in which 10, 20, or 40 percent of the 

training data were randomly removed to represent missing data (the validation dataset), 

and the remaining data were used as a training data set to create regression equations.  To 

obtain results that were insensitive to the particular selection of missing variables,  

canonical correlations and best subset multiple regression analyses were performed 

iteratively 100 times for cross-validation.  Analyses were performed in the IDL software 

package (Research Systems, 2005). The following scenarios were evaluated: 

 

a. Analyses were carried out separately for each year: 10, 20, and 40 percent of 

the data from that year were removed from the dataset for each year and treated as 

missing data. Regression equations developed using the training dataset were then 

applied to the reserved counties. In addition, to determine the year-to-year 

consistency of the equations, these same equations were extrapolated to estimate 

aboveground biomass values for the two other years,  

b. Combined data from two years were used together and separated into training 

and validation sets, with the unused year’s data used to check the ability to 

extrapolate beyond those years. 
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c. Data from all three years were combined and 10, 20, and 40 percent of the 

missing data from the same set were considered as the validation data set for the 

models obtained using training data. 

 

RESULTS 

 

The final composite NDVI images for the crop layers in 1992, 1997, and 2002 are shown 

in Figure 1.  When the temporal variation in NDVI was studied for each year, we found 

that NDVI increased from the beginning of April, and remained high from mid June 

through early October in 1992 and 2002, and mid June through mid September in 1997.  

Highest NDVI in all three years were observed from the end of July or early August until 

early September.  In general, NDVI increased during this period, the lowest being in 

1992 and highest in 2002.  The highest county-averaged NDVI observed for Iowa 

cropland were 0.63, 0.71, and 0.79 in 1992, 1997, and 2002, respectively.  The increasing 

trend over the years was more conspicuous during the period of high NDVI, but towards 

the end of the growing season, NDVI in 1997 was lower in certain biweekly periods, 

compared to the corresponding periods in 1992 (Figure 2).    

 

According to the crop area information reported by NASS, about 80% of the counties 

(i.e. 78 out of 99) in Iowa had more than 50% land cover with these crops, and the 

average crop area in the counties were 89%.  The percentage of the area occupied by corn 

within the cropland of a county ranged from 52 to 88% in 1992, 43 to 79% in 1997, and 
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38 to 70% in 2002. The percent area for soybean ranged from 3 to 48% in 1992, 14 to 

55% in 1997, 24 to 59% in 2002, and that for oats ranged from 0 to 12% in 1992, 4 to 9% 

in 1997, and 0 to 6% in 2002.  In 1992, the average percent crop area for corn, soybean 

and oats were 61%, 37%, and 2%, respectively; in both 1997 and 2002, the average 

percent annual crop areas for corn, soybean and oats were 53, 46 and 1%, respectively 

(Figure 3).  The county-level average yields reported by NASS for these three crops were 

slightly different between the three years, and the highest yields and biomass values were 

found in 2002; average corn yields were 9, 8.5, and 10 Mg ha-1, soybean yields were 2.9, 

3, and 3.2 Mg ha-1, and oats yields were 2.4, 2.6, and 2.7 Mg ha-1in 1992, 1997, and 

2002, respectively.  Thus the yields for the crops increased over time, as reflected in the 

increased NDVI, too (Figure 2).  

                                                                                           

Canonical correlation analyses 

 

For any of the years or combination of the years, the highest correlation between the first 

NDVI and crop biomass canonical variates was 0.92; the corresponding p-value of 

<0.0001 rejected the null hypothesis that all the canonical correlations are zero.  The 

results for multivariate statistical tests also confirmed the significance of the canonical 

correlations obtained from the analyses.   

 

Of the four canonical variates that contributed towards the observed model relationships 

with crop biomass (Tables 2 and 3), the first canonical variate (CV1) had the highest 

loadings from the original NDVI dataset; CV1 had positive loadings from NDVI pixel 
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values of the biweekly periods in early April to mid/end June, and early September to end 

October in all three years (Figures 4 and 5).  In all the models, CV1 was negatively 

correlated with crop biomass (Tables 2 and 3).  Since CV1 has the highest (positive) 

loadings from the NDVI at the early and end phases of the crop growth cycle, the 

negative coefficient of CV1 in all the models with biomass indicates that NDVI is 

negatively or less correlated with biomass during the early and final phase of the crop 

growth cycle.  This was confirmed by the negative correlation between biomass variables 

and the original NDVI pixel values from individual biweekly periods of the same time 

intervals. In addition, there was a positive correlation between crop biomass and original 

NDVI pixel values during the period from end June to end August; however, this 

correlation varied in value among the crops and different years, and ranged from 0.1 to 

0.84).  The loadings from original NDVI pixel values on the second, third, and fourth 

canonical variates were very low, except for the relatively high loadings on the second 

canonical variate in 1997 (Figure 4).  However, all four canonical variates seemed to 

follow the same pattern of variation, with positive loadings from NDVI pixel values 

towards the end phases of crop growth.  All four canonical variates contributed towards 

the model relationships with the biomass of each individual crop and area weighted total 

biomass. 
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Model relationships between NDVI derived canonical variates and crop biomass in 

relation to the extent of missing data 

 

Model relationships were obtained for 10, 20, and 40 percent missing data in biomass 

under the scenarios a) data from a single year, b) two years of data combined, and c) all 

three years of data combined. In general, they had relatively high R2 values for the 

models obtained from training and validation data sets (e.g. table2, figure 6).  However, 

when the same model relationships were extrapolated to a different year or a combination 

of years, the same model relationships yielded relatively low R2values (Figures 6 and 7).  

The extent of the difference between the mean estimated and observed values varied 

depending on the observed values in the year or the two years combined in the training 

dataset.  For instance under scenario 2, when the models for CAGBM from combined 

data in 1992/1997 were applied on the extrapolated data in 2002, the mean estimated 

values were 12% lower than the observed values (i.e. relative error 12%), and when 

models from 1992/2002 combination was applied on 1997 data, the mean estimated 

values were 3% higher than the observed values (relative error –3%).  The ratio of root 

mean square error/ mean estimated value  (RMSE/ MPRED) ranged between 0.1 to 0.2 

for CAGBM, 0.05- 0.2 for soybean, 0.1 to 0.3 for oats, and 0.1 to 0.2 for AWBM for the 

values in the extrapolated datasets under the first and second scenarios.  Under the third 

scenario when the data from all three years were combined for the analyses, the model 

relationships estimated biomass values with less than 1% relative error (i.e. (observed- 

estimated)/ observed) and less than 0.05 of RMSE/ MPRED ratio for both training and 

validation data sets when 10, 20, and 40 percent data were missing.  Thus the mean 
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estimated values were very close (within 4% across all the biomass variables) to the mean 

observed values for each biomass variable (Table 4).  However, the R2values were 

slightly lower than those obtained for the training and validation data sets under the first 

two scenarios (i.e. the single year scenario and with combined data for two years); the 

observed R2 for the validation data ranged for the third scenario ranged between 45-50% 

for AWBM, 60-70% for CAGBM, 50-60% for SAGBM, and 20-30% for OAGBM.   

 

We analyzed the average bias (i.e. average residuals) for all three scenarios.  Soybean 

always had the lowest bias (mostly within 5 kg ha-1; Figure 9).  However, oats being a 

minor crop with minimum crop area, showed the highest bias (still within 20 kg ha-1) in 

relation to the mean observed biomass values.  Corn had very low biases (less than 7 kg 

ha-1) in 1992 and 1997, but the bias was slightly higher (close to 15 kg ha-1) in 2002, in a 

year when the average corn biomass was much higher compared to the other two years; 

but still this bias was negligible since the average observed corn biomass in 2002 was 

18353 kg ha-1). 

 
DISCUSSION 

 
  
The current study tested the feasibility of using remotely sensed AVHRR NDVI 

information to predict crop aboveground biomass and estimate the residue carbon inputs 

from major crops in Iowa.  Using original biweekly NDVI pixel values as independent 

variables in developing model relationships with biomass was not advisable, due to the 

presence of multicollinearity among the biweekly NDVI pixel values in certain time 

periods, especially during the early crop growth. Multicollinearity problems were avoided 
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by using canonical correlation analyses that combined information from closely related, 

county- averaged biweekly NDVI pixel values during crop growth period into separate 

canonical covariates. Aboveground crop biomass variables derived using the annual yield 

data reported by NASS, served as the dependent variables.   

 

In analyzing the correlations between original NDVI and individual crop biomass 

variables, biomass of all three crops was positively correlated with NDVI from end June 

to end August when the NDVI was at a maximum.  Since corn and soybean had the 

highest crop area (mostly over 90%) and biomass, The largest contribution to NDVI must 

have come from these two crops .  The usual harvest date for corn and soybean is 

October, and harvest dates for oats normally fall in July in Iowa.  After the end of 

August, NDVI was negatively correlated with biomass, during a period when highest 

biomass should be found in the crops, especially for soybean and corn, due to maturation 

and end phase of grain-filling.  The grain-filling period, where 40-50% of the biomass is 

allocated to grain, usually falls within the last 50-60 days of growth cycle in corn plants.  

Thus the maximum NDVI was observed within the beginning of the grain filling period 

of corn plants.  The negative coefficient of the first canonical variate with biomass (and 

the observed correlation between biomass and original NDVI) denotes that biomass was 

negatively correlated with NDVI when the crop is close to harvest (in September- 

October).   These results are in accordance with a study by Curran (1981), in which a 

negative correlation was found with high biomass in vegetation and NDVI.  Canopy 

opening, and similar reflectance from drier or senescing vegetation towards the end of the 
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crop cycle and soil in NIR and visible range (Todd et al., 1998; Campbell, 2002), might 

have led to low NDVI and negative correlation with biomass.   

 

The coefficients obtained for the first canonical varate for different crops and different 

years varied, indicating the differences among the crop growth cycles and the differences 

in the biweekly periods in terms of crop phenology in different years.  Both NDVI and 

biomass depends on external environmental factors such as precipitation and temperature; 

crop biomass depends on the number of growing degree-days and the temperature during 

the grain filling, etc.  Therefore when such environmental factors vary between different 

years, it makes it less accurate to use the model derived from one year or a combination 

of two years on a different year.  Our study confirmed this by showing low R2 values 

when the models from scenarios 1 and 2 were extended to a different year, although the 

mean residual values were low.  Overall, the best results were obtained when the models 

from training data were applied for the missing data in the same year or the combination 

of years.  According to the results of the analyses, the mean estimated values or R2 values 

were not much dependent on the extent of the missing data considered in the study; the 

results obtained for cross-validation using all three cases of missing-ness (i.e. 10, 20, and 

40% of missing data), were very close, implying that our method could be used when 

more than 40% of the values are missing (i.e as the basis for crop biomass estimates with 

a smaller quantity of training data).  

Although the first canonical variate was the most useful canonical variate in predicting 

and interpreting the NDVI-biomass relationship, the purpose of the current study was to 

come up with model relationships between NDVI and crop biomass.  Thus the other 



 

 85

canonical covariates were also considered in the best subsets multiple linear regression 

analyses, to come up with the subset of the canonical variates that would give the best 

model fit between the NDVI and biomass of each individual crop. The current study 

showed that canonical correlation analysis followed by best subset multiple regression 

analyses, is  an improved approach in predicting aboveground biomass using NDVI 

values, especially as a means of predicting biomass when there are missing data in the 

reported crop statistics.   

 

The mean estimated values for training data and validation data from 100 runs under each 

case of missing data for all three scenarios were very close, within 5% relative error.  

This confirms that when models are derived from the available data within the same time 

period (within the same year or the combination of the years that are relevant to the 

missing data), this approach is highly successful; The observed R-sq value gradually 

decreased when we increased the time period for choosing training and validation data 

from  1-, 2- or 3-years However, using the data from all three years was the best approach 

in predicting the missing data in any of the participating years, than using one or two 

years’ data to predict the missing data in a different year, since the model extrapolation to 

a different year resulted in very low R-sq values.  

 

CONCLUSION 

 

Overall, the methodological approach used in the current study yielded model 

relationships between NDVI canonical variates and biomass variables with high R2 
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values, and estimated values with low relative errors (and RMSE/MPRED ratios).  

Canonical correlation analyses between NDVI pixel values and biomass data, and 

subsequent best subset regressions incorporating canonical variates, was used as a 

methodology for avoiding effect from multicollinearity among adjacent biweekly NDVI 

pixel values.  The results showed that the model relationships derived from this approach 

can be valid in predicting biomass values for up to 40 percent of the missing data.  

However, the missing data should be filled only with the models derived from the 

available data pertaining to the same time period, to better account for the specific 

phenological changes over the corresponding time period.  Canonical correlation analyses 

revealed that NDVI and crop biomass are well correlated during the middle of the crop 

growth from mid June to end August, and using all the canonical variates from original 

biweekly NDVI pixel values in subsequent best subsets multiple regression analyses was 

needed in determining model relationships for biomass of individual crops.  Overall, we 

found this approach suitable for filling missing biomass data at county-level, to be used 

in estimating residue carbon inputs or similar purpose.  Since it incorporates low 

resolution AVHRR NDVI data and available county-level yield data as the input data for 

model derivation, we find this as a better approach for regional or national scale studies, 

than for field scale studies.  This approach could be further enhanced by using MODIS 

NDVI data that have higher spatial, spectral, and radiometric resolution. 
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 Table 1. Time periods relevant to the biweekly composite NDVI images of 1992 and 
1997 that encompass the crop growth cycles.  
 
1992 1997 2002 
Apr 03- Apr 16 Mar 28- Apr 10 Apr05- Apr18 
April 17- Apr 30 Apr 11- Apr 24 Apr19- May02 
May 01- May 14 Apr 25- May 08 May03- May16 
May 15- May 28 May 09- May 22 May17-May30 
May 29- Jun 11 May 23- Jun 05 Jun1- Jun13 
Jun 12- Jun 25 Jun 06- Jun 19 Jun14- Jun27 
Jun 26- Jul 09 Jun 20-Jul 03 Jun28- Jul11 
Jul 10- Jul 23 Jul 04- Jul 17 Jul12- Jul25 
Jul 24- Aug 06 Jul 18- Jul 31 Jul26- Aug08 
Aug 07- Aug 20 Aug 01- Aug 14 Aug09- Aug22 
Aug 21- Sep 03 Aug 15- Aug 28 Aug23- Sep05 
Sep 04- Sep 17 Aug29-Sep11 Sep06- Sep19 
Sep 18- Oct 01 Sep 12- Sep 25 Sep20- Oct03 
Oct 02- Oct 15 Sep 26- Oct 09 Oct04- Oct17 
Oct 16- Oct 29 Oct 10- Oct 23 Oct18- Oct31 
 Oct 24- Nov 06 Apr05- Apr18 
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 Table 2.  Best subsets multiple regression models between the canonical variates from 
the relevant NDVI pixel bands and aboveground biomass in 1992 data when 10, 20, and 
40% data were missing. 
 
40% data missing R2 
CAGBM=25941.3691 - 354.713*CV1- 144.198*CV2 - 174.365*CV3 - 
132.656*CV4 

0.83 

SAGBM= 15324.9 - 72.8236*CV1 - 27.4222*CV2 - 8.2546*CV3 - 
27.0204*CV4 

0.62 

OAGBM=-12382.4 - 244.101*CV1 - 22.7414*CV2 - 22.0027*CV3 + 
4.3636*CV4 

0.92 

AWBM= 25422.55 - 141.741*CV1- 15.1164*CV2 - 192.989*CV3 - 
172.344*CV4 

0.61 

20% data missing  
CAGBM= 29598.17 - 324.767*CV1- 114.266*CV2 - 220.329*CV3 - 
187.053*CV4 

0.81 

SAGBM=17267.1484 -66.6498*CV1-22.5345*CV2 -1.8776*CV3 - 
39.3428*CV4 

0.59 

OAGBM= -12223.1 - 222.983*CV1+18.528*CV2 +52.6297*CV3 - 
12.4709*CV4 

0.92 

AGBM= 28438.03 - 127.991*CV1-20.9689*CV2 - 236.678*CV3 - 
190.907*CV4 

0.59 

10% data missing  
CAGBM= 29069.4844 -313.1467*CV1-97.3937*CV2 -221.8544*CV3-
00.4418*CV4 

0.81 

SAGBM=17136.9297 -64.5785*CV1-16.1217*CV2+ 0.0085*CV3-
38.7376*CV4 

0.58 

OAGBM= -12885.21-215.338*CV1+10.6914*CV2 
+60.9894*CV3+9.0038*CV4 

0.92 

AWBM= 28509.6855 -124.4203*CV1-26.0491*CV2-251.147*CV3 -
228.7913*CV4 

0.58 
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Table 3. Best subsets multiple regression models between the canonical variates from 
NDVI pixel bands and aboveground biomass in 1997 and 2002 for training data with 
10% data missing. 
 
1997 R2 
CAGBM= -16066.978- 1372.9088CV1-186.2685*CV2-
124.6874*CV3+196.6339*CV4 

83% 

SAGBM=-4869.7495- 375.6839*CV1+171.8032*CV2+ 194.6913*CV3+ 
39.2563*CV4 

78% 

OAGBM=-9096.083- 557.1525*CV1- 79.682*CV2+ 9.4436*CV3- 
191.1776*CV4 

55% 

AWBM= 25422.55 - 141.741*CV1- 15.1164*CV2 - 192.989*CV3 - 
172.344*CV4 

84% 

2002  
CAGBM=-100639.0703- 824.3716*CV1- 29.4531*CV2+ 45.33*CV3+ 
4.2968*CV4 

85% 

SAGBM= -43935.6406- 221.3674*CV1- 35.015*CV2- 22.1413*CV3- 
1.2646*CV4 

83% 

OAGBM=29324.2031- 216.8267*CV1- 23.1073*CV2- 22.9806*CV3+ 
17.8367*CV4 

24% 

AWBM= -84203.3672 - 652.5745*CV1- 41.6448*CV2+ 30.9411*CV3- 
0.6962*CV4 

86% 

 



 

 
 

93

Table 4.  Mean values from the observed and estimated values for training- and validation biomass data when the data from all three 
years are combined for developing model relationships through canonical correlation analyses. CAGBM- Corn Aboveground 
Biomass; SAGBM- Soybean Aboveground Biomass; OAGBM- Oats Aboveground Biomass; AWBM- Area Weighted Biomass. 
  
Variable Mean observed 

Biomass for all data (Kg 
ha-1) 

Percent missing data Mean Estimated values for 
training data (Kg ha-1) 

Mean estimated biomass for 
validation data (Kg ha-1) 

CAGBM 17281.18 ± 1879.95 10 16909.66 ± 32.31 16912.39 ± 262.43 
  20 16915.74 ± 51.0 16893.77 ± 168.08 
  40 16916.11 ± 94.42 16887.97 ± 132.35 
SAGBM 6933.0 ± 522.68 10 6945.13 ± 8.28 6949.42 ± 65.46 
  20 6947.58 ± 13.69 6942.95 ± 45.77 
  40 6947.72 ± 24.84 6941.78 ± 33.29 
OAGBM 5084.6 ± 1231.38 10 5090.45 ± 20.88 5105.31 ± 96.41 
  20 5095.09 ± 35.98 5096.08 ± 85.01 
  40 5090.66 ± 52.05 5086.91 ± 75.26 
AWBM 12645.67 ± 1292.17 10 12407.28 ± 25.98 12405.55 ± 169.31 
  20 12411.1 ± 43.22 12399.53 ± 109.56 
  40 12412.41 ± 67.31 12387.13 ± 93.61 
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Figure 1. Images used in the data analyses: (a), (c) and  (e) represent the false-color 
composites for  NDVI images during the crop season in1992, 1997, and 2002, 
respectively, and (b), (d), and (f) are the same images after being masked using the 
relevant crop layers of the NLCD Landsat image. (Note: image layers in (a) and (b) 
correspond to the biweekly NDVI from April 17- 30 (blue), May 01- 14 (green), and May 
15- 28 (red) in 1992, (c) and (d) correspond to the biweekly NDVI from April 11- 24 
(blue), April 25- May 08 (green), and May 09- May 22 (red) in 1997, and (e) and (f) 
correspond to the biweekly NDVI from April 19- May 02 (blue), May 03- May 16 
(green), and May 17- May 30 (red) in 2002). 



 

 
 

 
 
 
 

 
95 

 

 

100
110
120
130
140
150
160
170
180
190

94-
107

108-
121

122-
135

136-
149

150-
163

164-
177

178-
191

192-
205

206-
219

220-
233

234-
247

248-
261

262-
275

276-
289

290-
303

time (day of the year)

N
D

VI
 p

ix
el

 v
al

ue
s

_92 _97 _02
 

Figure 2.  Variation of NDVI averaged for the whole state of Iowa with biweekly time 
periods in 1992 with corresponding time periods in 1997 and 2002. The same trend was 
observed at individual county level. 
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Figure 3.  Box plots for crop area occupied by each crop as a percentage of total crop area 
in 1992,1997, and 2002.
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Figure 4.  The correlation between the original NDVI pixel bands and canonical variates 
with 90% data in the training set 
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Figure 5.  Correlation between original pixel bands vs first canonical variate with 90% 
data in the training dataset (10% missing)
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Figure 6. Adjusted R-sq values for the estimated relationships between NDVI canonical 
variates and corn, soybean,  oats and area weighted biomass (AWBM) under single year 
data scenario.  R-SQ_train: adjusted R-sq for the training data set from each year when 
10%, 20%, and 40% of the data were missing; R-SQ_valid: adjusted R-sq when the 
model obtained from the training data is applied on validation data; R-SQ_extrap_1 and 
R-sq_extrap_2 : adjusted R-sq when the model obtained from the training data from each 
year is applied on the data from each of the remaining years that were not included in 
deriving the model relationships; extrap_1 refers to the year that is lower in value and the 
extrap_2 refers to the year that is higher in value (for instance, for the training data were 
from 1992, extrap_1 corresponds to 1997, and extrap_2 corresponds to 2002). 
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Figure 7.  Adjusted R-sq values for the estimated model relationships between canonical 
variates from NDVI and corn, soybean, oats, and area weighted biomass (AWBM) data 
combined from different years (i.e. 1992/97, 1992/02 and 1997/02).  R-sq_train: R-sq 
from the models for training data set from each two-year combination when 10%, 20%, 
and 40% of the data were missing; R-sq_valid: adjusted R-sq when the model obtained 
from the training data is applied on a data set with 10-, 20-, and 40% data missing 
randomly; R-sq_extrap: adjusted R-sq when the model obtained from the training data 
from each two-year combination is applied on the data from the remaining year that was 
not included in the data combination. 
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Figure 8.  Adjusted R-sq values for training and validation data when the data from all 
the years are combined; R-sq_train: R_sq for the models derived using training data; 
R_sq_valid: R_square when the models from training data are applied on the validation 
data set
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Figure 9.  Average bias (i.e. average residuals) of the estimated values from 100 
iterations when 10, 20, and 40% data were missing within a single year
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CHAPTER 4 

 

DERIVING COMPREHENSIVE COUNTY-LEVEL CROP YIELD AND AREA 
DATA FOR ESTIMATING CARBON DYNAMICS IN US CROPLAND 

 

ABSTRACT 

 

Carbon (C) sequestration in agricultural soils has been proposed as a way to help mitigate 

carbon dioxide (CO2) buildup in the atmosphere.  Crop production data, collected across 

the US over many decades, provides a unique resource for analyzing the impacts of 

carbon inputs from crop residues on spatial and temporal trends in soil C at regional and 

continental scales.  However, significant gaps in reported crop yields and area need to be 

filled to accurately assess soil C changes. 

 

We created comprehensive county-level databases for nine major crops of the US for a 

16-year period, by filling the gaps in existing data reported by National Agricultural 

Statistics Service (NASS).  We used a combination of regression analyses with data 

reported by NASS and the Census of Agriculture and linear mixed-effect models 

incorporating county-level environmental, management and economic variables 

pertaining to different agro-ecozones.  Predicted yield and crop area data were very close 

to the data reported by NASS, within 10% relative errors.  Using the linear mixed-effect 

model approach gave the best results in filling 84% of the total gaps in yields and 83% of 



 

 101

the gaps in crop areas of all the crops.   Regression analyses with Ag Census data filled 

16% of the gaps in yields and crop areas of the major crops reported by NASS.   

 

Crop yields and crop area data, along with information on harvest index and root:shoot 

ratios, can be effectively used in estimating county-level crop residue C inputs for the 

entire country, to model C dynamics and determine the potential contribution from US 

agricultural soils in mitigating greenhouse gas emissions. 

 

INTRODUCTION 

 

Agricultural soils have been identified as a potential sink for increasing amounts of 

atmospheric greenhouse gases (GHGs) that lead to global warming, especially CO2 (Cole 

et al., 1996; Lal et al., 1998; Paustian et al., 1997).  Carbon sequestration in agricultural 

soils can be achieved by increasing C additions to soil and/or reducing decomposition of 

organic matter. Potential C sequestration in global agricultural soils through changes in 

land use management practices has been estimated as 600- 900 Tg yr-1 (Cole et al., 1996).  

According to Sperow et al. (2003), the potential C sequestration in US agricultural soils 

through such practices may be 80 to 100 Tg yr -1. 

 

Decomposition and soil C storage rates are highly dependant on the type and the amount 

of biomass added to the soils.  Crop yields can be used to estimate aboveground residue 

biomass using relationships between the crop yields and aboveground biomass for 

different crops (i.e. harvest indices).  Similarly, production of belowground residues can 
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be estimated using equations derived from studies quantifying plant C partitioning, by 

developing root: shoot ratios of production for different crops (e.g. Buvanovsky and 

Wagner 1986; Prince et al., 2001; Campbell and Jong, 2003).  Combining per ha 

estimates of C inputs together with cropland area provides an estimate of the CO2-C fixed 

by agricultural lands and the amount of C that can be returned to the soil as residues. 

 

Currently county-level crop yields in the US are reported by two main agricultural 

databases maintained by the US Department of Agriculture (USDA): the database of the 

National Agricultural Statistics Service (NASS), and the Census of Agriculture (Ag 

Census).  The NASS crop yield data are produced annually using a survey done on 

selected farms which is extrapolated statistically to estimate county-level crop yields.  Ag 

Census crop yield estimates are produced every 5 years during the years ending in "2" 

and "7"; Ag Census contacts every farmer within a county by mailing report forms to 

collect data and thus Ag  Census data are more complete and comprehensive  (Pawel and 

Fesco, 1988; USDA, 1998; R. Korkosh, personal communication, 2004).   

 

The county-level data reported by NASS are used extensively for designing government 

policies, supporting research and other purposes.  However, missing data (i.e. gaps) in 

certain parts of the country and reporting of yield and crop area information only at state-

level for certain states, presents limitations in using the data for comprehensive analyses 

of the C balance of agricultural lands.  Such data can be used as input to other models to 

analyze spatial patterns of regional scale C dynamics and/or for validation purposes, for 

example satellite-derived information on crop production and area extents. The aim of 
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our study was to derive complete county-level crop yield and crop area databases, by 

filling the gaps in the yield and crop area data reported by NASS over the period 1982- 

1997, using Ag Census data and statistical models incorporating appropriate county-level 

environmental, management, and economic variables.   

 

Studies done so far to estimate crop yields include models incorporating various agro-

meteorological variables (e.g. Berka et al., 2003) or combinations of agro-meteorological, 

hydrological, management and economic variables, such as the EPIC model (e.g. Cavero 

et al., 2001; Tan and Shibasaki, 2003).   Some studies have used combinations of ground 

based- and satellite-based information (Rudorff and Batista, 1990; 1991; Reynolds et al., 

2000; Lobell et al., 2003; Doraiswamy et al., 2003, 2004, 2005; Yang et al., 2004; Tao et 

al., 2005) to estimate yields.  In some of these studies, yields have been estimated 

through combining agro-meteorological variables, with remotely sensed information in 

statistical models (e.g. Rudorff and Batista, 1990, 1991; Smith, 1995; E. Lokupitiya, M. 

Lefsky, and K. Paustian, unpublished data) or simulation models based on remotely 

sensed information, such as Carnegie Ames Stanford Approach (CASA) and Global 

Production Efficiency Model Version 2.0 (GLO-PEM2; e.g. Tao et al., 2005).  In certain 

other studies, remotely sensed information has been combined with crop models such as 

EPIC (e.g. Doraiswamy et al., 2003; Yang et al., 2004) and FAO Crop Specific Water 

Balance Model (CSWB; Reynolds et al., 2000), to estimate yields.  These models have 

been mostly used in field- or regional- scale estimation of crop yields.   
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In studies for crop area estimation, either remotely sensed information (Bauer et al., 

1978; Hixson et al., 1981; MacDonald and Hall, 1980; Csorni et al., 2002) or purely 

statistical models (Griffith, 1999) have been used.  Remotely sensed information has also 

been used in improving the precision of ground-sampled data for area estimates 

(Gonzalez-alonso, 1997; Allen et al., 2002). 

 

In this study, we first evaluate the existing national crop yield and area databases, their 

characteristics and compatibility between NASS and Ag Census. We describe the 

methods used for the imputation of missing data for crop yields and  area and evaluate the 

appropriateness of these methods in imputing long-term data gaps in national crop 

statistics. 

 

METHODS 

 

Evaluation of the available national crop statistics for major crops in the US 

 

Yields and crop area of alfalfa (Medicago sativa L.) hay , barley (Hordeum vulgaris L.), 

corn (Zea mays L.) for grain, corn for silage and green chop, oats (Avena sativa L.), other 

hay (hay other than alfalfa; i.e. tame hay, small grain hay, wild hay), sorghum (Sorghum 

bicolor L.), soybean (Glycine max L.), and wheat (Triticum aestivum L.) were considered 

in this study.  NASS has reported crop statistics at the state level for more than 100 years 

and at the county level for over 70 years, for most of the country.  Data reported in NASS 

include planted and harvested crop area, yield and total production and management 
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practices (e.g. irrigation, summer-fallowing). The data from NASS (available at 

http://www.usda.gov/nass/pubs/histdata.htm) were reorganized into separate databases 

(using Microsoft Access 2000) of yields and crop areas for each crop with county FIPs, 

state, and yields (or crop areas) for each year of the 16- year period, 1982- 1997.  

Similarly, the data reported in Ag Census (by the Department of Commerce Bureau of 

the Census and USDA) were reorganized into separate databases of yields and crop areas 

for each crop with county FIPs, state, and yields (or crop area) for 1982, 1987, 1992, and 

1997.  

 

Compatibility of the crop yield and crop area estimates by NASS and Ag Census were 

evaluated by mapping (in Arc GIS version 8.2) the number of years the Ag Census and 

NASS have so far reported data under each crop for the period 1982-1997, and by 

mapping the absolute differences and percent differences (e.g. the difference in NASS 

crop yield as a percentage of the yield reported by Ag Census) in the crop yields and crop 

area reported by NASS and Ag Census for each crop.  Percent differences were used to 

find the distribution of any “outliers” or data representing extreme differences between 

the NASS and Ag Census databases.  Thus any discrepancies among the crop yields and 

crop areas reported by the existing 2 databases were evaluated taking the differences in 

the reported values and level of reporting (county- versus state-level) into consideration.  

In doing this we did a thorough study on the survey strategies used for data reporting in 

the two databases, and found out the counties that fall within different ranges of percent 

differences, and any states and counties that are not reported by either of the databases, 

using data queries in Microsoft Access 2000, and maps in Arg GIS (version 8.2). 

http://www.usda.gov/nass/pubs/histdata.htm
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Synthesis of comprehensive crop yield and area databases 

 

Following the preliminary analyses of discrepancies between the data reported by NASS 

and Ag Census, a step-wise procedure was used to fill gaps and derive complete county-

level databases of crop yields and areas, and estimate residue C inputs (Figure 1).  

Because NASS data is collected each year, it was chosen as the foundation database and 

data from Ag Census served in adjusting and filling missing data, as described below.  

The synthetic database produced is referred to as ‘NASSus’. 

 

Filling gaps in crop yields and areas reported by NASS where Ag Census data were 

available 

 

Leave-one-out and leave-k-out procedures were used to find out the most suitable 

statistical method for imputing NASS data (Lokupitiya et al., 2006).  Regression analyses 

between NASS and Ag Census crop yield data and multiple imputation technique in SAS 

(version 8.2) were found to be the best methods.  Spatial statistical analyses such as the 

Kernel regression and kriging were found as the least suitable methods to be considered.  

Therefore regression analyses between NASS and Ag Census yield data were performed 

to replace extreme data or ‘outliers’ in NASS yields, and fill in the gaps. In order to 

detect outliers, a criterion based on the lower quartile (Q1; 25%th percentile), upper 

quartile (Q2; 75%th percentile), and interquartile distance (IQ) was used; any value lower 

than (Q1 - 3*IQ) and any value greater than (Q2 + 3*IQ) were removed.  Regression 
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analyses performed separately between Ag Census and NASS yields for each crop and 

each of the years 1982,1987,1992 and 1997, were used to replace outliers and fill the 

gaps in NASS yield data.  Crop areas reported in AgCensus that were missing for 

corresponding years and counties in the NASS data were added to the NASSus database 

without adjustment.   

 

Using environmental variables to fill remaining gaps in crop yields 

 

Linear mixed-effect models (Littell et al. 1996) were used for filling remaining gaps in 

the yields in NASSus data, utilizing environmental and management factors such as 

irrigation, to predict yields.   

 

County-level weather and irrigation data were chosen as the covariates, with yields as the 

dependent variable, in the mixed models.  Mean monthly summer temperature (MST), 

annual precipitation (P), precipitation/potential evapotranspiration ratio (P/PET), 

irrigated/total crop area ratio (ITA) were the variables that represented fixed effects in the 

models.  County FIPs code was the only variable representing any random effects; the 

random effect represents variation among counties due to factors other than the fixed 

effects.   
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Preparation of environmental data for linear mixed effect model runs.    

Annual potential evapotranspiration was calculated for 1982-1997, using the method by 

Thornthwaite (1948), using weather data from the gridded PRISM (Daly et al., 1994) 

dataset (http://www.ics.orst.edu/prism) for the conterminous US (Figure 3).  

 

The USA has a total of 20 Land Resource Regions (LRRs), which delimit contiguous 

areas with similar geographical, climate and land use conditions (Figure 3).  County-

averaged yield data from different major crops and county weather variables were 

grouped by LRRs over the entire time series and sorted by year and county.  In addition, 

ITA for a county was used as a conditional variable to determine whether moisture-

limitations would be included in the model.  If a county had an ITA greater than 0.5 (i.e. 

majority of cropland is irrigated), then P and P/PET were not used in the prediction of 

yield. 

 

NASS typically reports separate explicit categories for irrigated and non-irrigated 

cropland where both are present as significant land area fractions. In some arid counties, 

the entire area for a particular crop is likely to be irrigated, hence NASS may only report 

total area for that crop.  Similarly, in many eastern US counties, where irrigation is 

minimal, NASS may only report total crop area.  In such instances, crops were designated 

as primarily irrigated or non-irrrigated based on location, type of crop and long-term 

climate averages.   

 

http://www.ics.orst.edu/prism


 

 109

Selection criteria for the best-linear mixed effect models and quality control 

measures for the predicted crop yields. 

Eq. [1] gives the basic model used in the linear mixed-effect models for crop yields: 

 

Y = X.β + Z.u + ε [1] 

Where: 

 Y= yield 

X= design matrix of covariates (or fixed effects, including the intercept, P, P/ 

PET, ITA, MST, and interactions between these variables ) 

 β= vector of coefficients corresponding to the fixed effects 

Z= design matrix of ‘0’s and ‘1’s for the random effects; for each fips, with ‘1’ in 

column j indicating that observation is from county j   

 u= vector of coefficients corresponding to the random effects for each fips 

 ε= error vector (which may be autocorrelated with time). 

 

The linear mixed-effect models were run separately for each LRR with autoregressive 

order 1 (AR1) covariance structure, with time as repeated measures, to fill in the 

remaining yields in counties.  Thus for each crop, several models with different 

combinations of the above covariates and the crop yield as the response variable, were 

run on each LRR in SAS (version 9.1).  The model with the lowest Akaike Information 

Criterion (AIC) was chosen as the best model for each LRR; the chosen model was used 

in filling the county-level yield gaps in different LRRs under different crops.  Altogether 

10 models were attempted on each LRR per crop; if convergence criteria were not met, or 
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the final Hessian was not positive definite, either AR(1) or random effects had to be 

dropped to have the convergence criteria met. 

 

The predicted yields from the linear mixed-effect models were compared against a 

default method that used the mean of the observed values within a county as the predicted 

values.   A few counties had only one observed (reported) yield or crop area value across 

the entire time series in an LRR under certain crops, while the other counties had several 

observations with relatively large variation in crop area or yields over the time series.  

Hence, no single standard statistical method could be adopted to screen for outliers.  

Therefore the following procedure was adopted for identifying outliers.  First, where 

predicted values fell outside plus/minus three times the mean of the observed values, they 

were given an initial designation as potential outliers.  Where potential outliers (in 

predicted values) also fell outside the range of the observed values for the particular 

counties, they were given a final designation as outliers, and were replaced with the mean 

of the observed values (i.e. the default option).  Final data screening was done 

considering the occurrence of the crop at county-level, i.e., imputed data were removed 

from counties that had no reported occurrence of the crop.   

 

Using environmental and economic variables in gap-filling in crop area data  

 

The mixed models for crop area data included economic and weather variables from the 

previous year as fixed effect predictor variables: precipitation, crop price, fertilizer cost 

(unit cost of anhydrous ammonia), and diesel cost.  County area and cropland area set 
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aside in the Conservation Reserve Program (CRP)  for the current year were also used as 

fixed effect variables. County FIPs served as the only variable for random effects.   

 

Data preparation.  Crop price data for the previous year were obtained from 

NASS (available at http://www.usda.gov/nass/pubs/histdata.htm).  Available state-level 

prices of the crops were extracted for the period 1981- 1996.  Where state-level price data 

were not available, the mean price of the multi-state crop production region was used.  

Since no price data were available for corn for silage in NASS, corn for silage price per 

ton was estimated by multiplying the per bushel price of corn grain by 9 (Barkley, 2002).  

All crop prices were adjusted for inflation using the Gross Domestic Product-Implicit 

Price Deflator (GDP-IPD; S. R. Koontz, personal communication, 2005). 

 

Fertilizer and diesel price data of the previous year were extracted from the USDA 

Agricultural Prices Annual Summary reports for the period 1981- 1996 (available at 

http://usda.mannlib.cornell.edu/reports/nassr/price/), and adjusted for inflation using the 

GDP-IPD.  Previous year’s precipitation was extracted from the PRISM data grid 

described above.  Cropland area enrolled in CRP since the beginning of the program in 

1986 to 1997 was obtained from the ERS (2005) and FSA (2005).  County-level crop 

area data and the data from all the predictor variables over the entire time series for the 

period 1982-1997 were then compiled and organized in a similar structure as detailed 

above for yield data.   

 

http://www.usda.gov/nass/pubs/histdata.htm
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Selection criteria for the best linear mixed-effect models and quality control 

measures for the predicted crop area.  Linear mixed-effect model analyses were 

performed with auto regressive order 1 (AR1) covariance structure with crop area as the 

dependent variable, county FIPs as the random effect, and different combinations of the 

following variables as the fixed effects: previous year’s precipitation, previous year’s 

crop price, previous year’s fertilizer price, previous year’s diesel price, CRP crop area, 

and county area. The analyses were performed under the following model options: 

a. Crop area as the response (y) variable, and diesel price, fertilizer price, crop price, 

CRP crop area, and county area as regression (x) variables 

b. Crop area/ county area as the y variable, and the rest of the variables as x 

c. Crop area/ county area as the y variable, with rest of the variables standardized 

(by dividing the value of each variable by the std. deviation of each variable), as x 

variables 

d. Taking all the variables standardized including the y variable in c above 

e. Log-transformed crop area as the y variable, log-transformed county-area as an x 

variable, and all the other x variables standardized (by dividing by the std. 

deviation); predicted y values were exponentiated back to get the predicted crop 

area values from the models. 

Linear mixed effect models were run on each different crop at LRR level, considering the 

entire time series.  The model with the lowest AIC was selected as the best model for 

filling the gaps in crop area data.   
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Detection of any outliers and quality control of the predicted  crop area were carried out 

in the same way as for the yields.  The total of the crop area aggregated at state-level was 

compared against the state-level cropland crop area based on the information collected by 

National Resources Inventory (NRI), as an additional quality control measure. 

 

Estimation of the carbon inputs from crop residues 

 

Under improved agricultural management practices in the recent decades, about 60% of 

the crop (stover and roots) is left on- and below-ground, with the remainder being 

removed by harvest; this becomes added to soils as crop residue.  Dry biomass of the 

aboveground crop residue can be estimated by subtracting the dry grain biomass (i.e. 

removed in harvest), from the total aboveground dry biomass.   Crop yields were 

converted to biomass of yield dry matter by correcting for moisture content.  Then the 

biomass of aboveground residue dry matter for each crop was estimated from crop-

specific harvest indicies (Williams and Paustian, submitted).  Then the biomass of the 

total belowground residue dry matter was derived using crop-specific shoot: root ratios 

corrected for rhizodeposition based on analyses of published biomass partitioning studies 

(Williams and Paustian, submitted). County-level totals do not account for removal of 

aboveground residue that is used for bedding, fuel or other purposes (e.g. grazing).  
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RESULTS 

 

Preliminary analysis of data 

 

Except for a few outlying values, Ag Census and NASS crop data were very similar, 

although some significant deviations were found. When all the crops were considered 

together (Figures 4 and 5), 80-99% of counties reported crop yields within 30% or less 

difference between NASS and Ag Census and 15-70% of counties had differences of 5% 

or less in reported crop yields (Table 1).   

 

The number of outliers was relatively small (less than 1- 5%) for each crop within each 

year.  For instance, Figure 4 shows the deviation of NASS wheat yields from those 

reported by Ag Census for 1997.  Since NASS collects information from a sample of 

farmers within a county and extrapolates that information to the entire county, it may 

create occasional anomalous values that were obvious during the years when both NASS 

and Ag Census data are reported.  It was found that the extreme differences between Ag 

Census and NASS for the same crop were very low even when the absolute differences 

between the yields were compared (Figure 5).  According to Figure 5, corn yields 

reported by NASS and Ag Census for a majority of the counties had a difference of only 

about 10 bushels per acre (i.e. 0.6 tonnes per hectare). 

 

Existing gaps in the crop yields reported by NASS.  Since NASS reports crop yield 

data annually, while Ag Census reports every 5 years, we used NASS as the underlying 
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database for developing complete and comprehensive databases for the major crops in the 

US. Although NASS reports annual data, NASS does not report crop yields in certain 

states and counties that are known to contain particular crops, particularly hay crops.  For 

instance, NASS does not report alfalfa crop yields in the counties of 21 states in the 

conterminous US, while Ag Census reports data for those states (Figure 6, Table 2).  

Similarly, Ag Census has not reported county-level yields and/or crop area of barley, 

corn for grain, corn for silage, oats, other hay, sorghum, soy, and wheat for some counties 

where NASS has reported data (Table 2).  Even in the years that both Ag Census and 

NASS have reported data, we found that still there are missing values in certain counties.   

 

Synthesis of comprehensive databases of crop yields and crop area 

 

Filling initial gaps in NASS data using Ag Census  

 

The regression analyses between NASS and Ag Census yields for 1982, 1987, 1992, and 

1997, gave high R2 values (e.g. Table 3).  For alfalfa hay, barley, corn for grain, oats, 

sorghum, soybean and wheat, close to 90% of the variation in the data reported by NASS 

were explained by Ag Census data.  However, compared to other crops, corn for silage 

and other hay showed a weaker relationship between NASS and Ag Census (lower R2 

values).  For all the crops, the slope of the regression was very close to 1 indicating a 

good relationship between the NASS and Ag Census data.  This was further evident since 

the intercept was close to zero in the majority of the crops (except for corn for silage and 

green chop, oats and sorghum, which could be due to the under representation of the data 



 

 116

in either of the databases under counties in certain states).  These regression models were 

used to replace the outliers (or the data that are extremely different compared to Ag 

Census) in NASS data, and fill in the gaps during the above four years when both NASS 

and Ag Census have reported crop yield and area.   Using this process, 16% of the gaps in 

NASS yields and crop areas were filled.   

 

Using environmental variables as covariates in linear mixed-effect models for filling 

the remaining gaps in the county-level crop yields 

 

The best linear mixed-effect models with different combinations of environmental 

variables for predicting missing yields of the crops in the counties of different LRRs are 

summarized in Table 4.  The best predictions (the lowest AIC) for crop yields in the 

western LRRs (i.e. A, B, C, D, and E) were obtained mostly with mean monthly summer 

temperature (MST); for LRR E, both MST and ITA seemed to contribute equally in 

predicting the yields in different crops (Table 4).  The best models for the rest of the 

country tended to be those that included the fixed effect variables P, MST, ITA, and P/ 

PET.  For alfalfa hay in LRRs C, O, U, other hay in LRRs C, and U,  and corn for silage 

in LRR O, convergence criteria were met in the models, but the final Hessian was not 

positive definite.  This was found when the observed data for the crop in the particular 

LRR was very few and sparse.  In such cases, convergence criteria were satisfactorily 

met, when the models were run with all the fixed effect variables and random variable, 

but no autoregression, or when the time correlation was removed from the model.  Most 
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of the time, the AIC for the best model and the AICs for the rest of the models differed by 

more than 2 (i.e. the value normally used in as the best-fit criterion under AIC).                                         

 

Quality control/ quality assurance of the final yields.  The number of ‘outliers’ in the 

predicted data was extremely low (Table 5) and only three crops (i.e. alfalfa hay, barley 

and corn) contained them; these very few outliers were replaced with the mean of the 

observed values for the particular counties (or FIPs).  All the predicted yields had relative 

errors less than 1.  Over the 16-year period the majority of the missing data in NASS 

were for alfalfa hay (21% of the total gaps), other hay (25%), and corn for silage (11%); 

the percentage missing data in the rest of the crops ranged between 5-10% of the total 

gaps in the yields reported by NASS.  Eighty-four percent of the total gaps in NASS (and 

99.998% of the gaps in the NASS and Ag Census combined data) were filled using the 

mixed models.  Only 0.02% of the gaps in NASS were filled with the default option (i.e. 

where the imputed values were designated as outliers 

 

Figure 7 shows the alfalfa yields from initial NASS database, NASS and Ag Census 

combined, and the completed alfalfa yields, with the imputed values (NASSus database).  

About 21% of the gaps in alfalfa yields reported by NASS were filled using the Ag 

Census information, and about 78% of the gaps were filled using the linear mixed effect 

models; the remaining 1% of the gaps were filled with the default option. Figure 8 

illustrates the yield trend over time with inclusion of the predicted values for corn in two 

counties, depicting the compatibility of the predicted (for the missing years) and the 

observed yields.   
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Using environmental and economic variables in filling the remaining gaps in crop 

area data  

 

Out of the mixed model options attempted, the final option (i.e. log-transformed crop area 

as y variable and all the other x variables standardized with log-transformed county-area 

as an x variable) was found to give the best model results, with the lowest relative errors 

and convergence criteria well met.  The best models for filling the crop area gaps in 

counties of each LRR were chosen based on the lowest AIC values (e.g. Table 6), and 

those models are summarized in Table 7.  No remarkable trends could be observed in the 

response of the crop area to the fixed effect variables used in the best models, but the 

crop area in the majority of the LRRs under each crop seem to have the best models with 

the combinations of the three variables, diesel price, fertilizer price, and crop price of the 

previous year.  When the importance of each single fixed effect variable is concerned, the 

diesel price of the previous year seems to be the most important predictor, being the sole 

predictor (other than the county area) for at least one LRR in a majority (5 out of 9) of the 

crops.  CRP area, either alone, or in combination with the other variables, seems to be 

more powerful in predicting the crop area when the area under CRP is high.  This was 

particularly obvious for LRR G, having close to 30% of the cropland in CRP during most 

of the time in the 16-year period, and more than 95% counties in the LRR containing land 

in CRP.  However, other LRRS (e.g. B, F, and H ) that had even a greater  percentage of 

the counties with CRP, did not have CRP area as a predictor in most of the best models 
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for any of the crops.   The reason could be that CRP area was about 20% or less of the 

total cropland area of these LRRs.     

 

Quality control/ quality assurance of the final crop area.  The relative errors produced 

from the mixed models were much lower than the default option (i.e. if the gaps were 

simply filled with the mean of the observed crop area; Table 8).  Occasionally, using the 

best mixed model yielded outliers, especially if only one or very few observed data were 

present over the entire time series; this trend was obvious for certain FIPs in LRR ‘U’ for 

alfalfa hay, LRR ‘O’ for corn for silage, and LRR ‘K’ for sorghum.  However, the 

number of outliers in each crop was less than 1% of the total predicted values (Table 5).   

 

The gaps in the few counties that had outliers were filled using the default method, by 

using the mean of the observed values.  Overall, 83% of the total gaps in the crop areas 

reported by NASS (and 98.5% of the remaining gaps in NASSus database) were filled 

with the linear mixed effect model approach and only 1% of crop area gaps in NASS 

were filled using the default method (Figure 9).  Table 9 provides a summary of the gaps 

filled in the crop area of each crop.   

 

In comparing the final crop area with the cropland area reported by NRI points at state 

level, we found that out of the 48 states in the US, 13 states had total crop area (all the 

crops combined together) that slightly exceeded the NRI cropland area.  However, the 

final total cropland area aggregated at state level was very close to the state-level 

cropland area according to the NRI, with an R2 exceeding 99%.  This was observed for 
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1982, 1992, and 1997, during which years NRI had also reported data (Figure 10).  As 

evidence of the overall goodness-of-fit of the linear mixed effect model approach, the 

trend in the total cropland area after inclusion of the predicted values for county-level 

missing crop areas, followed a trend very similar to the observed (reported) crop area 

trend over time (Figure 11). 

 

Estimation of the crop residue carbon inputs 

 

Intensity of C inputs estimated using the crop yield and crop area data largely reflects the 

geographical distribution of precipitation/potential evapotranspiration.  The highest C 

inputs on cropland (county-weighted; kg ha-1) occur in areas with high precipitation or 

irrigation.  Thus the Corn Belt region had the highest county-weighted carbon inputs and 

was closely followed by the Central Valley region of California where crops are grown 

essentially under irrigation (Figure 12).  The geographic pattern of county-weighted C 

inputs was similar during dry years and wet years, but on the average, during a wet year 

the amount of inputs added per ha was about 20% higher (Figure 12).  

 

By filling gaps in missing data, total estimated C inputs from the whole US over the 16-

year period were increased by 6%.   While significant at the national-level, the 

consequence of gap filling for estimating C inputs was even greater for certain crops and 

local areas. Gap filling accounted for about 45% of the total carbon inputs from alfalfa 

hay, 30% from other hay, 10% from corn for silage and green chop, and less than 5% 

from each of the other crops.  In about 20% of the counties (585 out of the 3044 counties 
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where crops were grown), the gap filling alone added more than 50% of the total carbon 

inputs (tonnes) that occurred over the 16-year period.  Gap-filling added 100% of the 

carbon inputs over the 16-year period in about 1.7% of the counties (51 out of 3044) that 

did not have yields or crop area reported by NASS, less than 10% of the carbon inputs in 

about 55% of the counties (1692 out of 3044), and 10-50% of the carbon inputs in about 

26% of the counties (803 out of 3044).   

 

DISCUSSION 

 

In studying the C balance in agricultural soils, both CO2 output from the decomposition 

process and C inputs from crop residues are important.  Carbon inputs and net primary 

production can be estimated from observed crop yields and crop-specific allometric 

functions.  One drawback in using the available US national crop statistics is missing 

yields and crop area information at county level.  Thus, more comprehensive crop yield 

and area data can be used in a variety of analyses of regional C balance studies.   

 

Out of the 3111 counties in the conterminous US, we found that only 67 counties had no 

crops reported.  In initial evaluation of the existing discrepancies between the two main 

crop statistical databases, NASS and Ag Census, we found that the most of the data are 

very close and comparable (Table 1).  However, the difference in the survey methods 

yielded occasional, extremely different values in NASS, compared to Ag Census.  

Certain differences in the reported county-level crop statistics could also be attributed to 

the way NASS and Ag Census reports the farm (or farmer) information; if a farmland 
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extends over several counties, NASS surveys use the location of the headquarters as the 

location of the farmland.  However, for Ag Census the county in which the operator earns 

most of his income is reported.  This discrepancy becomes visible in those counties with 

little agriculture (R. Korkosh, personal communication, 2004).  For certain crops, NASS 

does not report county-level data for certain states where the crop is present, and overall, 

NASS has a significant number of missing data at county level.  NASS reporting is also 

restricted by Title 13 of the US code that stipulates that data are not to be published if it 

would disclose the operations of a single farm within a county, but it is permitted to 

release the ‘number of farms’ information observed for a county (Griffith, 1999).  This is 

another reason for county-level missing data in NASS. Initially, we filled the gaps in 

NASS using the data from Ag Census; however, less than 20% of the total gaps in NASS 

data could be filled using the Ag Census information.   

 

Using linear mixed-effect models with environmental, management and economic 

variables to impute missing data yielded lower relative errors compared to a default 

method of simply using the mean of the observed values for a county.  Overall, the linear 

mixed effect model approach filled more than 80% of the total gaps in NASS data. In a 

few instances, where county data were very sparse, models needed to be modified by 

dropping either autoregression or random effects to meet the convergence criteria.  Less 

than 1% of the missing or imputed values were filled using the county-level time series 

mean as a default method.  Availability of a very low number of observations has been 

problematic in certain other studies as well.  According to Tao et al. (2005), the CASA 
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model overestimated yields in areas with few observations, while it performed better in 

areas with dense crop coverage.   

 

Using the AR(1) covariance structure yielded predicted values that showed a good time 

correlation/trend in the predicted yields (Figure 8), and overall the mixed model approach 

seemed to perform well; only a handful of ‘outliers’ had to be replaced with the means of 

the observed values.  Compared to other complex simulation models, our approach was 

straightforward, with fewer parameters.  It also incorporated essential environmental and 

economic factors, in addition to spatial and temporal autocorrelation effects.   

 

Incorporation of the county area was essential in the models for predicting the crop areas.  

In our study we incorporated log-transformed county area as a predictor variable, while 

Griffith (1999) had considered the density of area (by dividing by the county area) to 

incorporate any effect from the size of a county.  Griffith (1999) had taken the 

relationship between an agricultural commodity and the number of farms producing that 

commodity, along with the spatial autocorrelation in the statistical models used in small 

area estimation in Michigan and Tennessee.  With the model options having log-

transformed county area, we got better relative errors compared to having the area density 

as the dependent variable.   

 

Since no other ground-based database is available (except for NASS and Ag Census) to 

compare the final results at county-level, we aggregated the predicted crop area at state-

level, and compared those with the state-level cropland area based on the NRI.  The final 
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crop area for different crops at state-level was very close, although there were slight 

differences in certain crops at state-level. This could be mostly due to differences in the 

reporting by NRI and NASS or Ag Census, especially in terms of the differences of small 

grain crops (due to differences in sampling time), and differences in reporting hay crop 

categories.  The total cropland from all the major crops according to our final crop area 

(after filling all gaps) were very close to the cropland area from NRI estimates (R2 

=0.99).   

 

Carbon inputs showed a geographical variation in the level of addition, being highest in 

the areas with high precipitation and in arid/semiarid areas with irrigated cropland.  The 

same trend could be found during both dry years and wet years, although the amount of C 

was higher during the wet years (Figure 12).  The filling of gaps made it possible to 

estimate C inputs for a significant number of counties where the data were missing during 

all or certain number of years during the period concerned.   Gap filling added a 

significant proportion of C inputs both county wise and crop wise.  For instance, gap 

filling added more than 50% of the total C inputs in about 20% of the 3044 counties 

where the crops were grown; 10-50% of the total C inputs were added in about 26% of 

the counties.  Gap filling in yields and crop areas added close to half of the total C inputs 

from alfalfa hay, and close to one third of the C inputs from other hay. 
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CONCLUSION 

 

 A majority of the missing data in yields and crop areas reported by NASS during the 16-

year period were for alfalfa hay (21% of the total gaps), other hay (25%), and corn for 

silage (11%); missing data in the remaining crops were less than 10% of the total gaps.  

The effect of gap-filling was greater for certain counties and certain crops, especially for 

hay crops in certain states where NASS does not report county-level data, and certain 

counties with small crop areas.  The use of environmental, economic and management 

variables in linear mixed models while taking the spatial and temporal correlation into 

account, allowed filling the largest proportion of the data gaps; regression analyses with 

Ag Census also helped fill a significant portion of the gaps during 1982, 1987, 1992 and 

1997.  Overall, the methodological approaches we used in this study enabled us reach the 

goal of estimating the total county-level C inputs in residues from major crops in the US 

cropland, while creating complete county-level yield and acreage datasets for those crops.  

The next step is to use the information from the current study in modeling the C 

dynamics in the US agricultural soils, and its potential to contribute towards CO2 

mitigation. 
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Table 1.  Percentage of counties having < 30% and <5% difference, respectively, in 
NASS yield data compared to Ag Census 
 

1982 1987 1992 1997 crop 
<30% <5% <30% <5% <30% <5% <30% <5% 

Barley 92 37 93 40 91 23 99 60 
Wheat 94 50 93 29 93 26 98 42 
Alfalfa hay 82 19 80 15 78 13 92 37 
Corn 95 37 96 46 95 35 99 71 
Corn for silage 94 46 91 35 88 24 96 48 
Sorghum 89 45 91 35 84 17 91 39 
Other hay 77 24 81 19 80 17 88 36 
Soybean 97 59 97 60 97 47 99 77 
Oats 95 50 93 51 92 23 98 40 
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Table 2.  States with reported data for county-level crop information (i.e.yields and crop 
area) by Ag Census and NASS during the study period (1982- 1997). 
 
Crop State 
Alfalfa hay AL2, AR2, AZ, CA2, CO, CT2, DE2, FL2, GA2, IA, ID, IL, IN2, KS, KY, LA2, MA2, MD2, ME2, 

MI2, MN, MO2, MS2, MT, NC2, ND, NE, NH2, NJ, NM, NV, NY, OH2, OK, OR, PA, RI2, SC2, 
SD, TN, TX, UT, VA, VT2, WA, WI, WV, WY 
 

Barley AZ, CA, CO, DE, ID, KS1, KY1, MD, MI1, MN, MT, NC1, ND, NE1, NJ1, NM1, NV, OK1, OR, 
PA1, SC1, SD, TX1, UT, VA1, WA, WI1, WV1, WY 
 

Corn AL, AR1, AZ, CA1, CO, CT, DE, FL, GA, IA, ID1, IL, IN, KS, KY, LA1, MA, MD, MI, MN, MO, 
MS, MT1, NC, ND, NE, NH, NJ, NM, NY, OH, OK1, OR1, PA, RI2, SC, SD, TN, TX, UT1, VA, 
VT, WA, WI, WV, WY1 

 

Corn for 
silage  

AR1, AZ1, CA1, CO, DE1, IA, ID1, IL, IN, KS, KY2, LA1, MA2, MD1, MI1, MN1, MO2, MS1, MT, 
NC1, ND, NE, NH2, NJ2, NM1, NY, OH2, PA, RI2,, SD, UT, VA1, VT2, WA1, WI, WV, WY 
 

Oats AL1, AR1, CA1, CO1, GA1, IA, ID1, IL1, IN, KS, MD1, ME2, MI1, MN, MO1, MT, NC1, ND, NE, 
NY, OH, OK1, OR, PA, SC1, SD, TX1, UT, VA1, VT2, WA1, WI, WV, WY1 

 
Other hay AL, AR2, AZ, CA2, CO, CT2, DE2, FL2, GA2, IA2, ID2, IL, IN2, KS, KY, LA2, MA2, MD2, ME2, 

MI2, MN, MO2, MS2, MT, NC2, ND, NE, NH2, NJ, NM, NV, NY, OH2, OK, OR, PA, RI2, SC2, 
SD, TN, TX, UT, VA, VT2, WA, WI, WV, WY 
 

Sorghum AL1, AR, AZ1, CA1, CO, GA1, IA1, IL1, IN1, KS, KY1, LA, MO, MS, NC1, NE, NM, OK, SC1, 
SD1, TN1, TX, VA1 
 

Soy bean AL, AR, DE, FL, GA, IA, IL, IN, KS, KY, LA, MD, MI, MN, MO, MS, NC, ND1, NE, NJ, OH, 
OK, PA1, SC, SD1, TN, TX, VA, WI 
 

Wheat AL, AR, AZ, CA, CO, DE, GA, IA, ID, IL, IN, KS, KY, LA, MD, MI, MN, MO, MS, MT, NC, 
ND, NE, NJ1, NM, NV, NY1, OH, OK, OR, PA, SC, SD, TN, TX, UT, VA, WA, WI1, WV, WY 
 

(1- states reported by NASS, but not by Ag Census;  2- states reported by Ag Census, but 
not by NASS) 
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Table 3. Regression models obtained for Ag Census and NASS crop yields for 1997.  

____________________________________________________________ 
 Crop   Regression model      R2 
____________________________________________________________ 
 
 Alfalfa hay  NASS=  0.2497+ 1.006 Ag Census    0.86 
 Barley   NASS=- 0.1863+ 1.030 Ag Census      0.97          
 Corn for grain  NASS=  0.9819+ 1.009 Ag Census    0.97 
 Corn for silage NASS=  9.7973+ 0.865 Ag Census   0.73 
 & green chop  
 Oats   NASS= 4.7180+ 0.974 Ag Census    0.90 
 Other hay  NASS= 0.3297+ 0.907 Ag Census    0.71 
 Sorghum  NASS= 5.8482+ 0.967 Ag Census    0.92 
 Soy bean  NASS= 0.2880+ 1.018 Ag Census    0.98 
 Wheat   NASS= 0.3128+ 1.051 Ag Census    0.96 
________________________________________________________________________________ 
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Table 4.  Summary of the models used in filling the gaps in crop yields in different  Land Resource Regions (LRRs) of the US.  
(MST=mean summer monthly temperature; P=annual precipitation; PET= annual potential evapotranspiration; ITA= irrigated/total 
crop area). 

Model alfalfa 
hay 

barley corn Corn for 
silage 

Oats Other 
hay 

sorghum Soy wheat 

◘  MST D  A, B, C, 
D, E 

A, B, C, D, 
E 

A, B, C, 
D, H 

A, D, E C  A 

◘  P/PET*ITA A H     L   
◘  P, (P/PET*ITA)  J    R    
◘  ITA, P          
◘  no autoregression C, O, U   O  C, U    
◘  no fixed effects    J      
◘  P, MST    R  L   O 
◘  P*MST, P, MST   F J   F, J, O I O  
◘  ITA B, G A, C, D, I       B, C, D, E 
◘  MST, (P/PET*ITA), 
(P/PET*ITA*MST) 

     H F F, G  

◘ (P/PET*ITA), MST, 
(P/PET*ITA*MST), P 

H, I,  J, K, 
L, M, S 

G, K, L, M, 
N, S, T 

G, H, I,  
K, L, M, 
O, P, R, 
T, U 

H, I, K, L, 
M, T 

F, G, H I, 
J, L, N, O, 
P, R, S, T 

G, K, M, O G, K, O, T H, I, K, L, 
M, N, P, U 

G                     
J, K, L, M, 
N, P, T 

◘  ITA, MST E, T E, B  G E B, S D, E, S  H 
◘  P*MST, P, MST, 
(P/PET*ITA) 

F, N, P, R P, R F, N, S F, N, P, S K, M I, N, P, T H, J, M, N, 
P 

J, R, S, T F, I, R, S 
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Table 5.  Percentages of “outliers” in the total predicted values (including those predicted for 
both missing and the observed values) from mixed models, for yields and crop areas. 
  
Crop % “outliers” in predicted 

crop area  
% “outliers” in predicted 
yields 

Alfalfa hay 0.7 0.04 
Barley 0.6 0.05 
Corn for grain 0.2 0.004 
Corn for silage 0.2 No outliers 
Oats 0.72 No outliers 
Other hay 0.01 No outliers 
Sorghum 1 0.06 
Soy 0.55 0.002 
Wheat 0.002 No outliers 
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Table 6.  AIC values from different model options for wheat area in some LRRs.  AIC values of the best models are shown in bold. 
Diesel$=diesel price of the previous year; fert$=fertilizer price of the previous year; crop$= crop price of the previous year; CRP=crop 
area set aside under the Conservation Reserve Program during the current year; county_area= area of the county; P= precipitation of 
the previous year. 
 
Model LRR A LRR B LRR C LRR D LRR E 
◘  All variables 419.38 316.36 539.72 3408.63 2506.07
◘  Diesel$, county_area 435.48 412.98 567.88 3404.77 2506.39
◘  Fert$, county_area 445.97 418.20 567.67 3409.26 2502.34
◘  Crop$, county_area 420.17 324.38 542.40 3414.19 2509.87
◘  P, county_area 445.06 420.50 566.93 3426.76 2510.64
◘  CRP, county_area 445.50 414.99 566.84 3428.41 2514.13
◘  Diesel$, fert$, crop$, county_area 417.47 313.08 536.78 3406.57 2505.17
◘  Diesel$, fert$, diesel$*fert$, crop$, 
county_area 419.05 313.72 536.05 3408.50 2506.90
◘  Crop$, P, CRP, county_area 421.95 328.38 545.46 3415.79 2510.45
◘  Diesel$, fert$, crop$, CRP, 
county_area 419.42 314.49 537.80 3408.34 2505.24
◘  Diesel$, fert$, crop$, P, county_area 417.42 314.96 538.70 3406.89 2505.87
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Table 7. Summary of the models used in filling the gaps in crop areas in different  Land Resource Regions (LRRs) of the US crop 
area.  Pl. see the description under the title of Table 6 for abbreviations. 

Model alfalfa hay barley Corn Corn for 
silage 

Oats Other 
hay 

sorghum Soy wheat 

◘  Diesel$, fert$, crop$, P, 
CRP, county_area 

M, R, H G, H, I, P, S C, G, H,  
K, L, N, P 

F, M, P, R, 
S 

H, L, M, 
P, T, S, N 

T, N T J, M, N, P F, H, M, N, 
P 

◘  Diesel$, county_area  C, D, M D C, E, G, L, 
N 

D  D  D 

◘  Fert$, county_area    D  D   E 
◘  Crop$, county_area   B G A, E    C, G 
◘  P, county_area C, F, T J, S  T  H, O    
◘  CRP, county_area  G G, L   C   K  
◘  Diesel$, fert$,       crop$, 
county_area 

 E A, I   B, J K  O 

◘  Diesel$, fert$, 
diesel$*fert$, crop$, 
county_area 

I, L, P, N F, N, R, T E, O J B, F, G, R A, D, E, H, 
J, K, M, R, 
S 

G, I, M, N, 
O 

F, G, O B, I, K 

◘  Crop$, P, CRP, 
county_area 

D  U, S  I, J G, I, L E, L  S, U, R, L L 

◘  Diesel$, fert$, crop$, 
CRP, county_area 

 B, H   O P  I  

◘  Diesel$, fert$, crop$, P, 
county_area 

B, A, E, J, S A M, T, F B, C, E, K, 
L, N, T 

I F F, H, J T A, R, S, T, J 

◘  Diesel$, crop$, CRP, 
county_area 

 K R, J A, H, R K  C, P   

◘  Default (no random 
effects or no AR(1)) 

C, O, U   O  C, U    
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Table 8.  Percent relative errors (i.e., (observed-predicted)/observed) associated with the 
predicted values of crop area from the mixed model runs for different crops, and those if 
the predicted values were the default (i.e. mean of all the observed values). 
 
Crop Relative error with the mixed 

model 
Relative error with the default 
option 

Alfalfa hay -2.64 -10.35 
Barley -13.48 -41.76 
Corn for grain -7.28 -26.8 
Corn for silage -8.19 -21.14 
Oats -10 -41.2 
Other hay -3.39 16.1 
Sorghum -9.93 -52.7 
Soy 6.33 -33.47 
Wheat -8.9 -30.34 
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Table 9.  Percentage gaps1 filled through the different methodologhical approaches. 

Crop Gaps in 
NASS 

% gaps1 filled 
from NASS to 
combined 
NASS+Ag 
Census 
database  

% gaps in 
NASS filled by 
mixed models 
 

% gaps in NASS 
filled by the  
default option2 

Alfalfa hay 23017 20.77 77.81 1.42 
Barley 7049 3.18 94.95 1.87 
Corn 7822 10.92 87.78 1.3 
Corn for 
silage 

12417 18.56 80.98 0.46 

Oats 9626 7.45 89.86 2.69 
Other hay 27554 24.84 75.13 0.03 
Sorghum 8938 2.52 94.63 2.85 
Soy 5854 7.79 89.02 3.19 
Wheat 7371 10.46 89.43 0.11 

1- gaps correspond to the number of missing data in different years during the 16-year period in all the 
counties where each crop is grown. 
2- only the “outliers” of the predicted values from the mixed models were filled with the default option (i.e. 
means of the observed values) 
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Figure 1. Methodological approach 
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Figure 2.  Maps of the main environmental variables used in the mixed models for filling 
the gaps in yields (Only the data from 1982 are shown here). 
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Figure 3.  Map of the US Land Resource Regions (LRRs) 
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Figure 4. Difference in NASS wheat yield as a percentage of Ag Census data 1997 
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Figure 5.  Difference in corn yields- Ag Census versus NASS 
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 Counties reported by Ag Census 

Figure 6.  NASS and Ag Census differences in the reported counties – Alfalfa hay 
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Figure 7.  Original NASS, NASS- Ag Census combined, and final gap-filled 
database (i.e. ‘NASSus’) of crop yields in 1997- Alfalfa hay 
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Figure 8.  Trend in corn yields with observed (continuous line) and predicted (broken line 
and filled squares for the values; for years with no data) values, for two counties in two 
different states during the 16-year period. 
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Figure 9.  NASS, NASS and Ag Census combined, and ‘NASSus’ counts of years with 
alfalfa hay yields and crop area.  
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Figure 10.  Final cropland area (‘NASSus’) of all the major crops for 1982 (top), 1992 
(middle), and 1997 (lower), aggregated at state-level plotted against the state-level US 
total cropland area according to the National Resources Inventory (NRI).  
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Figure 11. Corn for silage and other hay crop area reported by NASS and the final crop 
area (‘NASSus’) after gap filling 
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Figure 12.  Total carbon inputs from the major crops of the US weighted by county area 
kg/ha- during a dry year (i.e. 1988; left) and a wet year (i.e. 1997; right) 
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CHAPTER 5 

 
TEMPORAL AND SPATIAL VARIABILITY OF RESIDUE C INPUTS TO US 
AGRICULTURAL SOILS: IMPLICATIONS FROM THE TRENDS IN CROP 

PRODUCTION, CLIMATE AND WEATHER 
 
 

ABSTRACT 
 
 
Carbon (C) dynamics in agricultural soils depend directly on C inputs from crop residues.  

Since crop residues account for about 50-60% of the biomass, trends in residue C inputs 

also reflect any trends in the cropland net primary production (NPP).  We analyzed the 

temporal and spatial variation of crop residue C inputs in US cropland soils over a 16-

year period (i.e., 1982-1997) and their relation to climate variables, to interpret the 

interannual variability and temporal trends in the C balance of US agricultural soils. 

   

 Out of the seven US Crop Production Regions (CPRs), the North Central and Far West 

regions had the highest yields, NPP and C input rates.  However, total annual residue C 

inputs were highest in the North Central and Central and Northern Plains regions that had 

the largest proportion (about 70%) of US cropland area.  North East and Delta States, 

which encompass about 12% of US cropland, had the lowest total C inputs per ha.  

Average C input rates ranged from 1.8 ± 0.1 Mg ha-1 yr-1 in Delta States to 3.0 ± 0.3 Mg 

ha-1 yr-1 in North Central region; average NPP per unit cropland area ranged from 3.1 ± 

0.2 Mg ha-1 yr-1 in Delta States to 5.4 ± 0.2 Mg ha-1 yr-1 in Far West region.  
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The interannual variability of C inputs was correlated with climate variables, especially 

the mean growing season temperature. The lowest yields and C input rates were observed 

in 1988, the year with the highest mean growing season temperature during the study 

period.  Total residue C inputs and C input rates for US cropland were inversely 

proportional to the mean growing season temperature over the study period.  This trend 

was also observed when comparing the spatial differences among the CPRs, as well. The 

Delta States and Southern Plains had the observed highest mean growing season 

temperatures and the lowest C input rates over the study period.  A quadratic relationship 

incorporating total growing season precipitation and mean growing season temperature 

closely predicted the observed annual variation in residue C input rates at the CPR level, 

depicting the crop response to prominent weather changes, including severe droughts. 

 

Total net C uptake (NPP) by the major US crops varied from a minimum of 379 Tg C yr-1 

in 1988 to a maximum of 570 Tg C yr-1 in 1994, averaging 504 Tg C yr-1 over the study 

period.  The observed maximum cropland NPP in 1994 was equivalent to about 40% of 

the total CO2-C emitted from US fossil fuel combustion.  Interannual variability (between 

adjacent years) in the total residue C returned to the US agricultural soils was as high as 

96 Tg, and averaged 47 Tg.  Variations of these magnitudes have major implications for 

estimating the C balance of US croplands over short time scales. 

 

INTRODUCTION 
 
 
The agricultural sector is among the major sources of increased greenhouse gas (GHG) 

emissions, both globally and in the US.  Cropland occupies about one-fifth of the area of 
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the US and it has had a significant impact on the country’s economy and the 

environment.  Total cropland of the US extends over seven major Crop Production 

Regions (CPRs) that vary in geography and climate: Far West, Central and Northern 

Plains, Southern Plains, North Central, Delta States, Northeast, Southeast.  The number 

of farms in the US has decreased since the mid twentieth century, from about 5.5 million 

to less than 2 million in 2000, but the total cropland area under production has remained 

fairly constant (Ray et al., 2003).   

 

The role of agriculture in carbon (C) cycling in the US and the potential for C 

sequestration and GHG mitigation by the agricultural sector has been widely examined 

over the past decade (Cole et al., 1995; Eve et al., 2002; Follett, 2001; Lal et al., 1998, 

2004; Ogle et al., 2003; Paustian et al., 1995, 1996, 1997a, 1997b, 2001, 2002; Sperow et 

al., 2003; West and Marland, 2002a,b ).  These studies discuss how improved 

management practices that add and/or store more residue C, such as no-till, crop rotation, 

reduced summer fallow, and conservation buffers, etc., could help sequester C and reduce 

carbon dioxide (CO2) emissions in agricultural soils. 

 

However, the amount of C fixed by agroecosystems, and hence the C removed in 

products (i.e. grain, forage) or returned as residues to the soil has a dominant role in the 

agricultural C balance.  Long-term trends in productivity and residue inputs to soil, 

driven by technological and management changes, also impact the magnitude and 

direction of change in soil C storage (Allmaras, 1999; Paustian et al., 1995, 1997).  

Moreover, because of the high rates of annual primary productivity of many agricultural 
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crops, relative to non-cropland vegetation, agricultural systems exert a disproportionate 

influence on short-term C cycle fluxes.  Thus, the high seasonal and interannual 

variability in CO2 uptake and C additions to soil, due to climate variability, in croplands 

has significant implications for short-term changes (i.e. over a few years) in C inventories 

(Marland et al., 2003) as well as atmospheric-based estimates of regional C cycling 

(Denning et al., 1995; Tian et al., 1999). 

 

In the majority of the countries in the world, lack of comprehensive agricultural statistics 

has been a major constraint in developing accurate national inventories of cropland 

emissions.  The National Agricultural Statistics Service (NASS) of the US reports annual 

crop statistics for the major US crops.  Some studies (Prince et al., 2001; Lobell et al., 

2003; Hicke and Lobell, 2004) have used the crop statistics reported by NASS for 

estimation of productivity and NPP at regional scale.  Lobell et al. (2002) used NASS 

yield data from 1992 to validate the national cropland NPP estimates using remotely 

sensed information.  However, there are significant gaps or missing data in the county-

level yields and crop areas reported by NASS.  For instance, NASS does not report 

annual county-level yield and crop area data for 21 states where alfalfa hay and other hay 

crops are grown.  Thus using the existing NASS data alone for estimating national level 

crop productivity over a significant time period (e.g. Hicke et al., 2002) might 

underrepresent the true picture of the cropland productivity.     

 

We used a new database, derived from the crop survey data reported by NASS and the 

US Agricultural Census, to quantify and interpret interannual variability in cropland NPP 
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and residue C additions in the US, for a 16-year period.  In earlier work, (Lokupitiya et 

al., submitted), we developed comprehensive county-level crop yield and area databases 

for major crops in the US, using a suite of statistical models with climate and economic 

data to fill data gaps in the crop statistics reported by NASS and Ag Census.  The 

databases include the dominant crop types in the US, i.e., alfalfa (Medicago sativa L.) 

hay, barley (Hordeum vulgaris L.), corn (Zea mays L.)  for grain, corn for silage and 

green chop, oats (Avena sativa L.), other hay (hay other than alfalfa; i.e. tame hay, small 

grain hay, wild hay), sorghum (Sorghum bicolor), soybean (Glycine max L.), and wheat 

(Triticum aestivum L.) that make up over 90% of the total US harvested cropland area.  In 

this second phase of the study, we used completed crop yield and area databases to 

estimate crop residue C (both aboveground and belowground) inputs in the US 

agricultural soils to study their temporal and spatial variation over a 16-year period, 

1982-1997.  We analyzed spatial and temporal variation in crop C input in relation to 

observed variation in crop yields, area extent, and climate over the study period. 

  

MATERIALS AND METHODS 
 

In earlier work (Lokupitiya et al., submitted), we combined and reconciled data on the 

annual crop areas and yields reported by the National Agricultural Statistics Service 

(NASS) and Census of Agriculture (Ag Census) to develop complete county-level yield 

and crop area databases.  Missing data in yields and crop areas were filled by using 

regression analyses of primary NASS and Ag Census data and linear mixed-effect models 

incorporating several environmental and economic variables, run at Land Resource 

Region (LRR; Figure 1b) level.   The gap filled databases were subject to thorough 
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Quality Assurance/ Quality Control (QA/QC) and validated against the cropland data 

from National Resources Inventory (NRI).    

 

The completed yield and crop area databases were then used to estimate residue C inputs 

for alfalfa hay, barley, corn for grain, corn for silage, oats, other hay, sorghum, soybean, 

and wheat over the 16- year period, 1982-1997.  Crop yields were corrected for moisture 

content and equations containing crop-specific harvest indices and root:shoot ratios and C 

concentrations (Buvanovsky and Wagner 1986; Campbell and Jong, 2003; Williams and 

Paustian, submitted; Prince et al., 2001) were used to calculate total above- and 

belowground biomass production (NPP) and residue C inputs from different crops. Crop 

area information was used to estimate total inputs over the cropland area (ha) in each 

county.  Monthly precipitation and temperature data for the 16-year period were obtained 

from the PRISM database (Daly et al., 1994), which consists of gridded (4 km2) values 

for the conterminous US, and aggregated to county-level.  County-level monthly 

potential evapotranspiration was estimated for the whole US for the study period using 

the method by Thornthwaite (1948).  Correlation between each weather variable and C 

input rates (Mg ha-1 yr-1) for each CPR were determined using the Pearson correlation; 

county-level data were aggregated to the whole US to test correlations between residue C 

inputs and weather variables at national level.  To determine what combination of 

weather variables could predict the exact observed temporal pattern of C input rates, 

county-level data for annual, monthly, or mean growing season  (i.e. monthly data 

averaged for the period April to September) weather variables were used as independent 

variables in a suite of linear mixed- effect models. These models were run (SAS version 
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9.1) for each CPR using combinations of the county-level data for above weather 

variables (including squared and interaction terms) and C input rates, to investigate the 

interannual variability of C inputs with variation in weather.  The model with the lowest 

Akaike Information Criterion (AIC) was chosen as the best model.  For summary 

interpretations, model estimated values from the county-level data for C inputs and other 

variables were aggregated by CPRs (Figure 1).  Interannual variability in C input rates in 

different CPRs were analyzed using a 5-year moving average across the 16-year period 

by studying the variation of the slope of the observed curve over time.  

 

 
RESULTS 

 

Spatial variation of residue C inputs 

 

The geographic distributions of major cropland species vary substantially (Figure 2).  

Hay, wheat, and corn occur throughout most of the conterminous US, while the other 

crops, particularly oats, barley, and sorghum have more limited distributions. 

 

Spatial variation in C inputs depends on the relative dominance of different crop species, 

their production potential and biomass allocation, and climatic and other environmental 

factors.  Most counties in the western US had very low residue C inputs per total county 

area, although the C inputs per ha of cropland were high in those counties where crops 

are grown (Figure 3), due to the prevalence of irrigation.  Per county C input rates were 

highest in the counties of the Corn Belt region, which falls within North Central CPR 

(Figure 1).   
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Total residue C inputs over the entire period was highest in the North Central region 

followed by the Central and Northern Plains regions (Figure 4 and Table 1), which had 

the largest percentage of total cropland area (on the average 40% in North Central and 

30% in Central and Northern Plains).  Delta States and North East regions that had the 

lowest percentage of the total cropland area in any given year together encompassed 

about 10% of the total annual C inputs in the US cropland.  The latter two regions had 

about 10-15% cropland area compared to the North Central and Central and Northern 

Plains.   Although corn was the main crop during the period, Far West and Delta States in 

general had the lowest corn crop area, and the North Central region had the highest corn 

area.   

 

Carbon input rates over the study period were closely related to yields.   Highest yields 

and C input rates were observed in Far West and North Central regions for the majority 

of the crops.  Delta States, Southern Plains and Central and Northern Plains regions in 

general had low yields and C input rates, except for relatively high yields and C input 

rates for small grain crops (except for barley) in Delta States, alfalfa hay and corn in 

Southern Plains, and soybean and corn for grain in Central and Northern Plains.   

 

Small grain crops (i.e. barley, oats and wheat) in general had the highest yields in the 

Far West region, followed by eastern regions, North Central and Delta States.   

Relatively low yields and C input rates for small grain crops were found in Southern 

Plains and Central and Northern Plains.   
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Hay crops had high yields and C input rates in North Central, Far West and South East 

regions, and low yields and C input rates in Central and Northern Plains and North East 

regions.  Southern Plains had relatively high yields and C input rates from hay other than 

alfalfa.   

Row crops corn and sorghum had the highest yields and C input rates in the Far West 

region (Table 2). The yields and C input rates of corn, sorghum and soybean were high in 

the North Central region, too.    Sorghum and soybean yields were low in Southern Plains 

and Delta States, and South East region in general had low yields for all three row crops.   

 

Crop residue C inputs clearly showed some variation due to climatic effects, especially 

due to variation in mean growing season temperature.  Mean growing season temperature 

differed by a maximum of 6 0C between production regions. Southern Plains (24.6 ± 0.45 

0C) and Delta States (24.8 ± 0.56 0C) had the highest mean growing season temperatures 

closely followed by South East (23.2 ± 0.6 0C) region.   Both Far West and North Central 

regions, which had high C inputs, had moderate temperatures (averaging between 17- 200 

C) during the mean growing season.  Annual C input rates from all the regions 

(combined) were negatively correlated with the range of mean growing season 

temperatures observed across the regions (r= -0.64; p<0.05). 

 

Precipitation/potential evapotranspiration (P/PET) ratio, which is related to moisture 

availability for plant growth, varied greatly across the different crop production regions. 

The percentage of counties with P/PET ratio less than 1 (i.e. low moisture availability) 

was high for the CPRs Central and Northern Plains (ranged 34- 91% of the total number 
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of counties within the region), Far West (34- 70% of the total), and Southern Plains (47- 

91% of the total), and much lower for the other regions (data not shown).  Majority of the 

counties in Far West and Southern Plains had a large proportion of irrigated crop area 

(>50% of the total cropland area). 

 

Although the PET varied among the CPRs, within a CPR it varied temporally within a 

narrow range. Highest PET in any given year was observed in the Southern Plains, 

followed by the Delta States, South East, North Central, Far West, North East, and 

Central and Northern Plains, respectively.   

 

The Far West region had the lowest mean annual precipitation (50.7 ± 9.9 cm) across the 

time series, followed by the Central and Northern Plains (57.5 ± 6.8 cm) and Southern 

Plains (79.5± 8.7 cm).  Delta States, North East, and South East regions had precipitation 

over 100 cm, and Delta States had the highest average of the annual precipitation over the 

period (139.8 ± 15.5 cm).  The North Central region, which had the highest total C inputs, 

had an intermediate average annual precipitation (90.7 ± 11.6 cm).  There was no 

statistically significant correlation between C inputs and P/PET when the data from all 

the regions were combined.  

 

Comparison with cropland NPP 

 

Residue C input rates (Mg ha-1 yr-1) closely followed the trends in annual cropland net 

primary production (Mg ha-1 yr-1).  Highest NPP and C input rates were observed in the 
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Far West and North Central regions, followed by Central and Northern Plains.  The 

average regional annual cropland NPP over the 16-year period ranged from 3.1 ± 0.25 

Mg ha-1 yr-1 in Delta States to 5.36 ± 0.22 Mg ha-1 yr-1 in the Far West.  Although the 

average NPP in crop areas was high in Far West, the crop areas were relatively a very 

small percentage of the total county areas in the region as a whole (only 5% crop area).  

At national scale, the US cropland NPP over the 16-year period ranged from 3.61 Mg ha-1 

yr-1  in 1988 to 5.07 Mg ha-1 yr-1  in 1994.  Total annual C uptake in NPP by the US 

cropland averaged 504.4 ± 57.7 Tg yr-1 (Table 3), and total US residue C inputs was 61-

62% of the total US cropland NPP.   

 

Temporal variation in residue C inputs 

 

The lowest between-year variation for C input rates (19% difference between the 

minimum and maximum) over the 16-year period was observed for Delta states, and the 

highest variation (40%) was observed for the North Central region. 

   

Variation of C inputs is directly related to both temporal and spatial variation of the 

yields and the area extent of different crops.  Over the 16-year period, the US area 

(harvested) under crops such as alfalfa hay, barley, and oats in general had decreased 

over time, while the total area under corn and soybean had increased towards the end of 

the period (Figure 5).  Average yields of barley, corn, oats, sorghum, soybean, and wheat 

showed an overall increasing trend over the 16-year period, although there was 

considerable variation from year to year, due to variation in weather.  Average yields of 
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hay crops and corn for silage remained relatively stable (Figure 6).  The largest 

proportion of the total cropland area over the 16-year period was occupied by corn 

(24%), wheat (22%), and soybean (22%). These crops were followed by hay (other hay 

and alfalfa hay; jointly about 21% of the cropland area), sorghum, barley, oats, and corn 

for silage, each of which occupied less than 5% of the total cropland area.   

 

In general, yields and C input rates in different CPRs were relatively low in 1983, 1988, 

1991, 1993 (except for Southern Plains in 1993), and 1995.  Total residue C inputs were 

the lowest in 1983 and 1988 and the majority of CPRs had the lowest annual C input 

rates during 1983, and/or 1988.  For the most part, yields and C inputs were relatively 

high across the CPRs during the years 1992, 1994, 1996 (except for the low C input rates 

in Southern Plains in 1996), and 1997.  During 1982, 1984, 1986, 1987, 1989, 1990, 

more mixed results were shown; yields from certain crops were high in certain regions, 

while they were low in the other regions during the same year.   

 

Based on the trend in the moving averages, average C input rates (from all the crops 

combined) increased from 1982 to 1997, by 0.22 Mg ha-1 in the Central and Northern 

Plains, 0.23 Mg ha-1 in the Delta States, 0.42 Mg ha-1 in the Far West, 0.25 Mg ha-1  in 

North Central, 0.08 Mg ha-1  in North East, 0.23 Mg ha-1 in South East.  In the Southern 

Plains, because of the lowest C input rates observed in 1996, the overall trend was neither 

increasing nor decreasing over the study period.  
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Carbon inputs varied with changing weather over the study period.  The lowest C inputs 

to US cropland soils were observed in 1988, a prominent drought year with the lowest 

average annual precipitation (82  ± 35.4 cm), and the second highest mean growing 

season temperature (21.6 ± 3. 0C) during the 16-year period (Figure 7).    Within the 

different regions, there was no statistically significant relationship between temporal 

variation of C input rates and P/PET alone.  Statistically significant relationships could be 

observed for the CPRs Central and Northern Plains, Far West, Southern Plains and Delta 

States when C input rates were regressed with the county-level data for mean growing 

season temperature and P/PET ratio.    

 

Area-weighted annual residue C input rates (Mg ha-1 yr-1) for the whole US were 

negatively correlated with the mean growing season temperature over the study period 

(i.e. r= -0.65; p<0.05).  For individual CPRs, area-weighted annual C input rates were 

also negatively correlated with the mean growing season temperatures over the time 

series, in Delta States (r= -0.51; p<0.05), North Central (r= -0.62; p<0.05), North East (r= 

-0.62; p<0.05), and South East (r= -0.74; p<0.05) regions.  The highest mean growing 

season temperatures were observed in 1987 and 1988, and the lowest C inputs were 

observed in 1988 (Figure 7b). Similarly, during other years that had above average 

growing season temperatures, the crop C inputs tended to be lower (Figure 7b).   

 

The observed temporal trend in C input rates was well predicted by a quadratic 

relationship (i.e. the model with the lowest AIC in the mixed model runs; Table 4) that 

incorporated mean growing season temperature, squared mean growing season 
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temperature, mean growing season precipitation, squared mean growing season 

precipitation, and interaction between the mean growing season temperature and mean 

growing season precipitation.  The model coefficient for the quadratic term for mean 

growing season temperature was negative for all the CPRs, and the weather variables 

well predicted the very low C input rates observed in 1983, 1988, and 1993 in the Central 

and Northern Plains and North Central regions (Figure 8).  The model correctly predicted 

the observed trend for the C input rates in the other CPRs, as well.  

 

DISCUSSION 

 

Net primary production and yields in croplands vary spatially and temporally due to 

spatial and temporal differences in climate, management and other factors.  Regional 

patterns in crop production are largely driven by differences in the productivity potential 

of different crop species, which are largely governed by climate, but modified by 

management (e.g. irrigation).  Temporal trends in production are influenced by 

developing technology (i.e. crop genetics, fertilization) and changes in management and 

agricultural policies, and by long-term trends in climate and CO2 concentrations. 

Embedded within these longer trends, is the interannual variability of production, largely 

driven by climate variability and climate cycles (e.g. El Nino, La Nina), the effects of 

which also vary spatially across the continental US.   Spatial variability is also related to 

the differences in  soil quality, moisture and nutrient availability that are directly or 

indirectly related to climatic differences.    
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Crop NPP and residue C inputs showed significant interannual variability over the 16 

year period.  The total annual residue C inputs to the US agricultural soils over the 16-

year period ranged from a minimum of 234 Tg C yr-1 in 1988 to 352 Tg C yr-1  in 1994.  

Total NPP ranged from 379 Tg C yr-1 in 1988 to 570 Tg C yr-1 in 1994.  Interannual (year 

to year) variation in total residue C inputs was significant over the study period, ranging 

from 9-95 Tg C yr-1 ; interannaul variation in total C in annual NPP ranged from 15-151 

Tg C yr-1.   

 

Our estimates are slightly lower than the total cropland NPP for the US estimated by 

Lobell et al. (2002) using satellite data (in CASA model) for the period 1982-1998.  Their 

NPP estimates based on the satellite estimates in 1992 had been validated against the 

NPP estimates from NASS data in 1992.  They estimated an NPP value of 620 Tg yr1 for 

the US cropland, which is 60 Tg higher than our estimate for 1992.  Validation of 

estimates based on remotely sensed data for a drought year (i.e. giving NPP estimates for 

both ends of the range) might have better helped understand the degree to which the NPP 

derived from the two methods are compatible.  Lobell et al. (2002) also incorporated a 

few more crops, compared to ours, in their study.  Our study is the first study to estimate 

the C inputs to soils over the period, and hence no comparison could be done against the 

estimated crop-specific and total residue C inputs or annual C input rates over the period.  

 

Yields and C input rates in different regions showed an overall increase over the study 

period.  In the analysis of variation of the curve derived from the moving average, we 

found that the average residue C input rates in a majority of the CPRs increased by 0.22-
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0.25 Mg ha-1 from the beginning to the end of the period.  The long-term trend of 

increasing yields for most major crops, mainly since the 1930’s is well recognized and is 

largely attributed to an array of technology and management developments, including 

increased fertilizer use, crop genetics, and pest management (Reilly and Fuglie, 1998).  

Although genetic improvements, particularly development of shorter stature varieties for 

small grains (e.g. wheat, barley) in the 1960s-70s, led to an increase in harvest index, 

characteristic harvest indices have remained relatively constant in recent decades 

(Williams and Paustian, submitted).  Hence, the trend in yield increases during our study 

has driven a commensurate increase in net CO2 assimilation and C inputs to soil.  

 

Total US CO2-C emissions from fossil fuel burning in 1994 were 1384 Tg C (US EPA, 

1999). Thus the total cropland NPP was equivalent to 40% of the fossil fuel CO2-C 

emissions and residue C inputs were equivalent to about 25% of the total fossil fuel CO2-

C emissions.  This evidences the importance of cropland C dynamics in the overall C 

cycle of the US, especially in the regions like North East and Central and Northern Plains 

(where the largest crop areas are found compared to the other regions).  In contrast to 

other anthropogenic processes in the C cycle such as CO2 emissions from energy-use, C 

fluxes associated with CO2 assimilation, harvest export and the soil C balance on 

croplands, exhibit a much higher degree of interannual variability.  

 

Interannual variability of total C inputs and per ha C input rates directly depended on the 

yields and crop area extent.  During the study period corn, wheat, soybean and hay crops 

occupied over 90% of the US cropland, and oats and barley occupied less than 5% of the 
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total cropland.  Over time, area under soybean and corn increased, while the area under 

alfalfa hay, barley, oats, and sorghum decreased; the yields of majority of the crops 

increased over time.  Depending on the yields and area extent, annually the largest 

amount of C inputs were added from corn, followed by soybean, wheat and hay crops.  

But on a per ha basis the highest C input rates were from corn, sorghum, alfalfa hay, 

wheat, and soybean, respectively, although the area extent of sorghum was relatively very 

low (less than 5%).  

 

The mean growing season temperature among the different CPRs during this period 

ranged between 16.7 and 25.8 0C, and the regions that had the highest mean growing 

season temperature had the lowest C input rates.  The C input rates were inversely 

proportional to the mean growing season temperature over the 16-year period. Although 

we observed this trend for the country as a whole (and in few regions), regional 

differences existed in the influence of variation in temperature on yields.  For instance, 

although we observed the lowest mean growing temperature and precipitation for the 

whole US in 1988, all the regions except for the North Central region and Central and 

Northern Plains, experienced less different or lower mean growing season temperatures 

compared to the previous year, but with lowered precipitation.  Lowering of temperature 

and precipitation in Delta states (that normally has the highest precipitation among the 

regions) seem to have caused a slight increase in the C input rates compared to the 

neighboring years.  Thus the overall trend we observed for the whole country seem to 

reflect mostly the effects in the North Central region and Central and Northern Plains, 

that had the largest crop areas, lowest precipitation and highest temperature in 1988.   
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The inverse relationship with increasing growing season temperature was quite prominent 

for the C input rates observed in the North Central region.  For instance, for a 10C 

increase in the growing season temperature (and a decrease in precipitation of 8 cm 

compared to the previous year), a decrease of 0.76 Mg ha-1 in C input rate was observed 

in 1983.  The same change in magnitude  (i.e. a decrease by 0.76 Mg ha-1) was observed 

in 1993, when the growing season temperature in the North Central increased by 10C 

(compared to1992), with the highest growing season precipitation observed for the region 

during the 16-year period.  This might imply a potential reduction in productivity in the 

region with increases in growing season temperature, despite any associated variation in 

precipitation.   Lobell and Asner (2003) observed decreasing trends for soybean and corn 

yields with increase in the growing season temperature and they also could not observe a 

relationship between the yields and precipitation alone (Lobell and Asner, 2003).  

However, inclusion of growing season precipitation in a quadratic model with growing 

season temperauture in our study, helped predicting the exact observed pattern of C input 

rates over the 16-year period (Figure 8).  

 

As described above, the temporal variation we observed in C input rates were mostly 

related to changes in weather driven by climatic events such as El Nino.  The drought in 

1988 has been attributed to variation in the sea surface temperature in the tropical Pacific, 

and mostly restricted to the northern plains, west coast and South East (Rasmusson and 

Wallace 1983, Trenberth et al., 1988, Palmer and Branković, 1989).  Drought in the mid 

west region occurred from April to June 1988, and by July of the same year, 43% of the 
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area of the country was in severe drought (Trenberth et al., 1988).  Drought can affect the 

critical stages of crop growth and yields.  For instance, corn yield can be severely 

affected by the water stress at tasseling; four days of visible wilting before tasseling could 

reduce corn yield by 10-25% (Rosenzweig et al., 2000).   Also, drought is the most 

important factor affecting soybean yields in the South Eastern US. (Hansen et al., 1997).  

Soybean is sensitive to water stress and drought at planting and from flowering to pod-

fill.  

 

Low C input rates were also observed in 1983, 1991 and 1993.   On the average, C input 

rates were moderate to high during the years 1982, 1985, 1992, 1994, 1996 and 1997.  

All of these years encompassed El Nino events, some of which seem to have caused 

drastic effects, due to extreme weather, mostly during the second half (of the episode).  

For instance, during 1992-1993 episode, high yields (and thus residue C input rates) were 

observed in 1992 in the North Central region when the growing season temperature was 

relatively low.   During 1993, growing season temperature was higher than the previous 

year and the floods in the Mississippi river valley occurred due to very high precipitation.  

Fungal epidemics in corn, soybean and alfalfa caused by high moisture, and outbreak of 

soybean sudden death syndrome in the US Midwest in 1993 (Rosenzweig et al., 2000), 

may have led to the (low yields and) low residue C inputs observed.  During the same 

year, severe summer drought occurred in the South East region causing yield losses (Lott, 

1994), thus reduced residue C inputs as we observed in our study.   Thus the same El 

Nino event could yield differential responses in different CPRs. 

 



 

 169

According to our analyses, the major impacts on yields and residue C input rates were 

observed during the El Nino events 1982-1983, 1987-1988, and 1992-1993, the effects of 

which were reflected mostly in the relatively high yields and C inputs during the first part 

of the episode, and reduced yields and C inputs during the second half of the episode.  

Although such interannual variability could be observed, the overall trend in NPP and 

residue C inputs was increasing during the period.  This implies that management and 

technological improvements could still help increase C uptake in the US croplands 

through increased NPP and higher productivity that could lead to increased soil C 

storage, despite certain short-term impacts from the extreme weather events.  

 

CONCLUSION 
 

Total C inputs over the 16- year period varied depending on the crop area extent, yields, 

crop type, weather, and climate.  Largest amounts of C inputs were added from the crops 

that had the greatest area extent.  Region wise, the North Central region, which had a 

significant crop area, moderate mean growing season temperatures, and precipitation/ 

potential evapotranspiration ratio >1, had the highest yields and residue C inputs.   The 

Far West region had a very low crop area (about 5%), but the C input rates (ha-1) within 

the cropland area was relatively high.  This region had the lowest mean growing season 

temperatures and precipitation lower than potential evapotranspiration; thus most of the 

crops were irrigated.  Highest C input rates were observed for corn, followed by 

sorghum, alfalfa hay, wheat, and soybean.  But since the area of sorghum was very low, 

the total C inputs added were much more significant for the other crops that had 

relatively high crop areas.   
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Within the temperature range observed for the period, C inputs in the whole US and 

certain Crop Production regions showed a negative correlation with the mean growing 

season temperature.  In the US, the yields and C input rates were low during the years 

that had relatively high average mean growing season temperatures.  Also the regions that 

had relatively high mean growing season temperatures (e.g. Delta States and Southern 

Plains) had relatively low production and residue C input rates.  Although no statistically 

significant relationship could not be observed for precipitation, the interaction between 

the temperature and precipitation in a quadratic relationship in linear mixed effect 

models, proved the impact of precipitation especially during the prominent drought years.  

The annual cropland NPP estimated for the period ranged from a minimum of 378.8 Tg C 

yr-1 in 1988 to a maximum of 569.5 Tg C yr-1 in 1994.  Cropland is a significant 

component of the C cycle for the continental US; for example, cropland NPP was 

equivalent to about 40% of the CO2-C emissions from fossil fuel burning by the country.  

Despite the interannual variability associated with weather changes, overall C inputs to 

the US cropland soils increased over time.  However, the interannual variability in the 

amount of C added to soil, was generally greater than the magnitude of the total mean 

increase over the 16-year period.  This degree of variability in C inputs has implications 

for estimating short-term changes in the net C balance of cropland soils.    
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Table 1.  Annual C inputs Tg over the 16-year period in the major Crop Production 
Regions of the US. 
 
Year CNP DS FW NC NE SE SP US total 
1982 82.8 13.1 21.1 164.0 11.8 27.7 23.4 344.0 
1983 66.2 10.5 20.7 104.8 9.7 18.0 18.3 248.3 
1984 80.1 12.6 21.9 151.2 12.3 25.6 20.5 324.1 
1985 85.6 11.3 20.8 168.7 12.8 24.7 22.8 346.6 
1986 84.7 9.4 20.1 157.8 11.2 18.0 19.2 320.6 
1987 80.6 8.9 18.4 141.9 10.4 17.2 16.6 293.9 
1988 62.1 9.9 18.1 101.6 8.9 16.9 16.3 234.0 
1989 70.5 9.1 19.1 149.7 10.3 20.8 17.1 296.6 
1990 86.2 9.6 20.5 155.8 11.0 18.1 18.5 319.6 
1991 82.9 8.1 18.1 143.0 9.5 17.5 17.2 296.2 
1992 91.9 10.2 17.9 170.9 10.9 21.0 22.3 345.2 
1993 79.9 8.6 20.3 127.0 9.5 16.5 18.9 280.8 
1994 94.6 9.9 19.1 179.0 10.9 20.7 18.1 352.4 
1995 79.5 8.7 21.0 146.5 9.8 18.0 16.4 299.9 
1996 96.9 12.0 22.1 160.0 11.0 20.3 17.6 339.9 
1997 97.8 10.9 21.6 168.4 10.1 19.0 21.8 349.6 
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Table 2. Ranges (minimum-maximum) for the area weighted annual C input rates during the period 1982- 1997 (Mg C per ha per 
year) for major US crops in the US observed in different CPRs 
 
CPR Range of annual C input rates (Mg ha-1 yr-1) 
 Alfafa 

hay 
Barley Corn for 

grain 
Corn for 
silage 

Oats Other hay Sorghum Soybean Wheat Overall 

CNP 1.88- 2.32 1.06- 2.04 3.39- 4.99 0.92- 1.18 0.92- 1.18 0.80- 1.13 2.13- 3.32 1.62- 2.36 1.55- 2.14 2.06-2.70 
DS 2.10- 2.58 No crop 3.04- 4.34 No crop No crop 1.14- 1.35 2.44- 3.01 1.46- 2.05 1.39- 2.99 1.80-2.48 
FW 3.79- 4.17 1.95- 2.57 5.06- 6.35 1.67- 1.90 1.67- 1.90 1.24- 1.44 3.21- 3.59 No crop 3.14- 3.96 3.07-3.72 
NC 1.77- 2.87 1.26- 2.41 3.08- 5.46 0.92- 1.24 0.92- 1.24 1.04- 1.27 2.52- 3.91 1.83- 2.56 2.16- 3.01 2.37-3.95 
NE 2.12- 2.47 1.92- 2.52 2.82- 4.55 1.00- 1.32 1.00- 1.32 1.05- 1.16 No crop 1.68- 2.25 2.36- 3.49 1.95-2.56 
SE 2.23- 2.91 1.57- 2.42 2.39- 4.21 0.97- 1.33 0.97- 1.33 1.16- 1.37 2.10- 2.91 1.45- 2.06 1.91- 3.01 1.76-2.57 
SP 3.02- 3.58 1.54- 1.96 3.61- 5.18 1.46- 1.65 1.46- 1.65 0.92- 1.20 2.18- 2.64 1.54- 2.01 1.41- 2.09 1.96-2.33 
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Table 3.  C in total cropland NPP (Tg C) over the period in different CPRs and the US  
 
year CNP DS FW NC NE SE SP US total 
1982 131.4 19.1 36.0 263.1 22.9 43.7 36.6 552.8 
1983 105.0 15.4 35.2 168.0 19.4 28.8 29.5 401.3 
1984 126.8 18.6 37.4 241.6 23.9 41.1 32.2 521.6 
1985 135.3 16.9 35.9 269.8 24.6 40.2 36.6 559.4 
1986 134.7 14.1 35.1 252.8 21.9 29.9 31.1 519.6 
1987 127.8 13.3 32.2 227.0 20.5 28.7 27.1 476.5 
1988 98.8 14.8 31.7 161.2 17.6 28.2 26.5 378.8 
1989 111.7 13.7 33.5 238.1 20.0 34.7 28.0 479.7 
1990 135.7 14.5 36.0 248.2 21.4 30.5 29.7 515.8 
1991 131.6 12.4 32.4 227.5 18.5 29.8 28.3 480.6 
1992 145.3 15.8 31.3 272.1 21.0 35.4 36.2 556.9 
1993 126.5 13.1 34.9 201.9 18.5 28.3 30.7 453.9 
1994 149.7 15.2 33.4 285.1 21.0 35.3 29.8 569.5 
1995 126.3 13.3 37.2 232.3 18.8 31.1 27.2 486.2 
1996 153.8 18.4 38.1 253.7 21.0 34.7 29.4 549.2 
1997 155.5 16.8 38.0 267.0 19.6 32.3 35.9 565.2 
Average 131.0 15.3 34.9 238.1 20.7 33.3 30.9 504.2 
 



 

 

177

Table 4.  AIC values from several different model options attempted for weather and C input relationships.  The quadratic 
relationship in the last row was chosen as the best model to predict the observed trends in C input rates.  ppt= precipitation; 
tmean=mean monthly temperature; ratio= precipitation/ potential evapotranspiration; Prefix ‘S’ stands for “summer”  to 
indicate the growing season and ‘Ann’ stands for “Annual”.   
 
Model CNP DS FW NC NE SE SP 
Sppt Stmean 8482 -750 2186 16500 658 2863 13654
Sppt Stmean Sppt*Stmean 8466 -757 2172 16181 601 2748 13645
Stmean Annppt 8445 -695 2231 16499 636 2810 13862
Stmean Sratio Stmean*Sratio 8462 -769 2176 16021 574 2742 13679
Stmean Annppt Stmean*Annppt 8446 -694 2194 16460 627 2700 13808
Stmean Annratio 8462 -704 2231 16484 687 2833 13927
Stmean Sratio 8466 -757 2182 16498 684 2865 13732
Stmean 8486 -681 2229 16498 775 2881 13967
Sppt Stmean Sppt*Stmean Sppt2 
Stmean2  7885 -791 2150 13208 400 2626 13545
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US Crop Production Regions  
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Figure 1.  Counties categorized under different Crop Production Regions (CPRs) 
and Land Resource Regions (LRRs) of the US.  The description of the CPRs is as 
follows: CNP- Central and Northern Plains; DS- Delta States; FW- Far West; NC- 
North Central; NE- North East; SE- South East; SP- Southern Plains 
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Figure 2.  Counties where major crops of the US were present during the 16 year period, 
1982- 1997.  The data are from the comprehensive databases we developed in the first 
part of this study. 
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Figure 3.  County-level total C inputs (Gg; top left), C inputs per cropland area 
(Mg ha-1), and C inputs per county area (kg ha-1) in the US during 1997.  
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Figure 4.  Spatial variability in average annual residue C inputs over the period 1982- 
1997, as shown for different a) Crop Production regions and b) Land Resource Regions 
(LRRs). See caption Fig. 1 for the description of the CPRs.
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Figure 5.  Temporal variation of total crop area under different crops (after filling the gaps) 
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Figure 6.  Variation of average yield dry matter (estimated using the county-level yield data) of alfalfa hay, barley, corn, oats, other 
hay, sorghum, soybean, and wheat over the 16-year period.  The error bars represent the standard deviation.
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a.  change in  C inputs with precipitation
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b. Change in C inputs with temperature
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Figure 7.  Temporal variation of total annual C inputs with a) mean annual precipitation 
and b) mean growing season temperature in the US agricultural soils. Similar variations 
were observed for carbon input rates (Tg per ha; Total C inputs for the whole US 
weighted by the crop areas aggregated from all the counties), too. 
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Figure 8.  Interannual variability of observed C input rates and those predicted using the 
weather variables in a mixed model, for North Central region. 
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CHAPTER 6 

 

C DYNAMICS IN US AGRICULTURAL SOILS ESTIMATED USING THE 
INTRODUTORY CARBON BALANCE MODEL (ICBM) 

 

ABSTRACT 

 
 
Carbon dynamics in agricultural soils depends mostly on the C inputs added from crop 

residues and the C output to the atmosphere from microbial decomposition of the added 

inputs.  We studied C balance in US agricultural soils, using the Introductory Carbon 

Balance Model (ICBM), with C inputs estimated from county-level yield data as input to 

the model.  We studied the spatial and temporal variability of soil C stocks in relation to 

changes in C inputs that mostly reflected the variation in production and weather over the 

study period.   

 

Estimated soil C stocks in the permanent cropland ranged between 3.07 to 3.11 Pg (to a 

depth of 0-20 cm), which was mostly influenced by the interannual varation in the mix of 

crop species and residue C inputs.  From the beginning to the end of the study period (i.e. 

1982-1997), total soil C stocks increased by only 14 Tg, and the interannual variation 

observed for total C stocks was mainly dependent on the amount of residue C added from 

the previous year.  The interannual variation in soil C stocks was much less than the 
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variation observed for the residue C inputs.  The interannual (year to year) variation in 

total C stocks ranged within 20 Tg over the study period.  Higher C stock rates (45.4 ± 

0.1 Mg ha-1 yr-1) were observed for irrigated soils ( ~ 10% of total cropland) compared to 

rainfed soils (36.2 ± 0.1 Mg ha-1 yr-1) at national scale; however in certain regions (e.g. in 

the Far West and North Central regions) the opposite could be observed.  We found that 

apparent Net Ecosystem Productivity (i.e. the sum of soil C stock change and the 

exported harvest) in the US cropland ranged between 14 and 50 Tg yr-1 during the period 

1994-1997.  Our study did not consider impacts from addition of any organic 

amendments or changes in tillage practices.  The magnitude of the contribution from 

cropland soils in mitigating CO2-C emissions could be even higher once we include these 

factors in the analyses.   

 
INTRODUCTION 

 

Carbon balance in terrestrial ecosystems has large implications on the variation in 

atmospheric carbon dioxide (CO2) emissions.  Atmospheric CO2 has increased from 280 

ppmv in 1850 to 374 in ppmv in 2003, mostly as a consequence of human disruption of 

the balance in the global carbon cycle, including land use activities.  US agricultural soils 

is currently responsible for about 7% of the country’s annual CO2-C emissions (US EPA, 

1999), and there is a significant potential for sequestration of C, especially in the 

temperate soils, by adopting appropriate improved management practices that help 

mitigate atmospheric CO2 emissions (Lal et al., 1998; Paustian et al., 1997, 2002; Follett, 

R.F., 2001). 
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Plant litter including residues from croplands, and other organic amendments to soils 

undergo decomposition and release CO2 through mediation of microbial activity, having 

significant influence on the C cycle at ecosystem level.  The focus on global warming and 

its implications on overall carbon cycle has prompted more and more research for 

studying the changes in terrestrial ecosystem C cycling.  Although there are means of 

direct estimation of soil C changes (e.g. measurements based on field sampling and lab 

analyses, isotope studies) and CO2 emissions (Eddy covariance measurements), there is 

still not enough observed data to evaluate temporally and spatially varied C dynamics 

(i.e. changes in soil C stocks) at regional or national scale.  Therefore most of the studies 

that have estimated such large scale C dynamics, have mostly used complex simulation 

modeling approaches (either top-down or bottom-up approaches) incorporating a range of 

input variables including statistics related to vegetation and/or remote sensing (Denning 

et al., 1995, Lobell et al., 2002, Potter et al., 1993, Potter, 1999, Parton et al., 1987, 

Paustian et al., 1995, 2002).   

 

Modeling soil C dynamics and decomposition extends far back to few decades ago (e.g. 

Olson, 1963), and with recent emphasis on the potential role of soils in mitigating 

atmospheric CO2, further development and refinement of models with special emphasis 

on soil C dynamics has increased (Parton et al., 1987, Jenkinson, 1990, Jenkinson et al., 

1991, Andren and Kätterer, 1997, Andren et al., 2004, Del Grosso et al., 2005).  These 

modeling approaches have been especially helpful for inventory purposes, when 

countries report annual total emissions and sinks under different sectoral categories, 

including agricultural soils.  The short-term C dynamics and interannual variability of C 
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stock changes have been a major concern in developing inventories and studying overall 

cropland contribution to the C cycle, and our aim of this study was to evaluate the US 

cropland C dynamics using the estimated comprehensive residue C input data in a simple 

simulation modeling appraoch.  

 

We used the Introductory Carbon Balance Model (ICBM), originally developed for 

Swedish agricultural soils, in estimating C dynamics (i.e. overall C stock changes and 

interannual variability in soil C) of the US agricultural soils for a 16-year period, 1982-

1997.  ICBM is a simple 2-pool soil C model run with 5 parameters (i.e. annual carbon 

input rate, decomposition constants for the two carbon pools, an external influence 

coefficient, and a humification constant).  The model estimates for Swedish agricultural 

C stocks have been validated against observed data from long-term experiments (Andren 

and Kätterer, 1997, Andren and Kätterer, 2001, Andren et al., 2004). This model has been 

applied for regions in Sweden (ICBMregion model; Andren and Kätterer, 2004), Canada 

and Africa (O.A. Andren, 2006, personal communication; Andren and Kätterer, 

submitted).  The current study is the first study attempting the use of ICBM to study 

national scale C dynamics in the US.  

 
 

MATERIALS AND METHODS 
 

ICBM region  (ICBMr) model description 

 

The ICBMregion (ICBMr) model has two main soil C pools: a ‘young’ C pool (Y) and an 

‘old’ C pool (O). The model incorporates annual carbon inputs i (Mg ha-1 yr-1) and four 
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other parameters: decomposition constant for Y (i.e. fraction of Y that decomposes in a 

year) kY (yr-1), decomposition constant for O (i.e. fraction of O that decomposes in a year) 

kO (yr-1), external influence coefficient to represent influence from soil climate re 

(dimensionless), and humification coefficient (fraction that enters from Y to O, after 

subtracting the CO2-C outflow) h (dimensionless).  Since we considered the change in C 

stocks over a relatively short period, and since the aim of the study was mostly to study 

the interannual variability using the estimated residue C inputs, we assumed that the C 

stocks are at steady state at the beginning of the study period.    Initial, steady state C 

stocks were calculated considering the mean residue C input rate over the 16-year period 

as the initial equilibrium C inputs, and the average re value for the period as the initial 

equilibrium  re at the equilibrium state; the defaults values were used for kY, kO, and h. 

The initial stocks were calculated using the steady state equations shown in Figure 1.   

Equations 1 and 2 were the model equations used in calculation of the young and old soil 

C stocks (Andren and Kätterer, 2004).  
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 Y = Young C pool (Mg ha-1); O= old C pool (Mg ha-1); t= time (year);  

 i= C input (Mg ha-1); h = humification coefficient (dimensionless); 

 kY= decomposition constant for Y (year-1); kO = decomposition constant for O  

 (year-1); re= external influence coefficient.  
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Model inputs and parameter estimation 

 

County-level annual crop residue C inputs (Mg ha-1 yr-1) for the US were estimated using 

a database of crop residue and yields for major crops in the US cropland for 1982-1997 

(Lokupitiya et al., submitted).  Crops included alfalfa (Medicago sativa L. ) hay, barley 

(Hordeum vulgaris L.), corn (Zea mays L.) for grain, corn for silage and green chop, oats 

(Avena sativa L.), other hay (hay other than alfalfa; tame hay, small grain hay, wild hay), 

sorghum (Sorghum bicolor L.), soybean (Glycine max L.), and wheat (both winter wheat 

and spring wheat; Triticum aestivum L.).   

 

The default values used as the decomposition coefficients in ICBMr were used for the 

current study, as well (kY = 0.8, kO = 0.006), and h = 0.13; O. Andren, 2006, personal 

communication).  The external influence coefficient,  re was estimated using the weather 

to soil climate module (W2re) as detailed in Andren and Kätterer (2004).  Parameter re 

incorporates three parameters representing soil water balance (rw), soil temperature (rt), 

and a cultivation factor (rc) as shown in eq 3. 

  re= rW * rT * rc.          [3] 

Estimation of rc factor in ICBMr model is still in the testing phase (O.Andren, 2006, 

personal communication), and thus a default value of rc = 1 was assumed for the current 

study.  The re values using the other two components of (i.e.  rW  and rT ) were estimated 

for different crop types (9) and soil types (11) of the US at county level.  Soil data used 

(i.e. volumetric water content at field capacity and wilting point by soil type), and the 
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percentage of each soil type at county level for the US were obtained from the 

STATSGO (http://www.ncgc.nrcs.usda.gov/products/datasets/statsgo/) database.   

 

Estimation of rW and rT.  

Soil water balance, rW  was estimated based on the concepts and equations derived from  

FAO guidelines for computing crop water requirements (Allen et al., 1998, Andren and 

Kätterer, 2004).  The daily water balance in the soil was calculated using daily 

precipitation (PPT), actual evapotranspiration (actual evaporation from soil and actual 

transpiration from crops), crop interception, run off and percolation (Andren and 

Kätterer, 2004).   

 

We calculated soil potential evapotranspiration (PET) using the Hargreaves ETo equation 

(Hargreaves and Samani, 1985, Allen et al; 1998, Samani, 2000). The daily precipitation, 

minimum and maximum temperatures, solar radiation (W m-2) at county level were 

extracted using the Daymet database (http://www.daymet.org/) for the PET calculation.  

For the counties with both irrigated and rainfed agriculture, irrigation water amounts for 

each crop were extracted from the Census of Agriculture, and added to precipitation, to 

estimate actual total water input to the irrigated cropland soil. 

Crop coefficients (Kc, Kcb, and Ke; Allen et al., 1998) based on the growth cycle of 

individual crops were used in the estimation of interception.  In calculating these 

coefficients, crop start date and end date information was compiled using the crop 

http://www.ncgc.nrcs.usda.gov/products/datasets/statsgo/
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calendars published by USDA (1997); for perennial alfalfa, the start dates of the growth 

period within a year was compiled based on the last frost date in the spring.   

 

Volumetric water content at field capacity and wilting point for different soil types in the 

US were used in calculating the relative water content and rW .  Air temperature from the 

Daymet database was adjusted to soil temperature using a simple empirical equation, and 

soil temperature was used in a quadratic relationship to derive rT (Andren and Kätterer, 

2004).   

 

Model runs 

 

Daily re values at county level were calculated for each crop by soil type, for a topsoil 

depth of 20cm, separately for irrigated crop areas and rainfed areas over a 17-year period 

from 1981-1997, and averaged to get annual re values for each category.  In this study, 

we ran ICBM for combined C inputs from all the crops; thus the final annual re values 

from all crop and soil types were aggregated to two main re values: irrigated vs rainfed.  

Carbon stocks from the irrigated, rainfed, and total cropland in the whole US were 

estimated for the period 1982-1997, using the equations 1 and 2.   

 

The results from the model runs were analyzed for the total C stock changes in relation to 

variation in the stocks in young and old pools.   The estimated C stocks were validated 

against the C stocks reported in the pedon data (NRCS, 1997) from soil samples collected 

in different states; each pedon sample had specific information on the ecosystem type 



 

 194

(e.g. forest vs cropland), soil series, and, other relevant information including the soil 

depth.  To avoid any impact from the large variation seen in the crop areas over the 16-

year period, the interannual and spatial variability of C stocks were estimated for the 

permanent cropland (i.e. the lowest cropland area observed for a given county during the 

entire time series, which was constant for the entire time series).  Estimated C stocks 

during the 16-year period were analyzed considering the variation associated with 

weather changes, C inputs, and the practice (i.e. irrigated vs rainfed).  Spatial variation 

was mostly analyzed at regional level (at Crop Production Region (CPR) level).  

 

We also estimated the “apparent” Net Ecosystem Productivity (NEP; i.e., the sum of soil 

C stock change and the exported harvest) for the US cropland during the period 1994- 

1997.  In this analysis we included the annual Net Primary Production (NPP), CO2-C lost 

in decomposition, and the total C in the US grain export over the period.  We assumed 

that the consumed grain within the country adds no C to agricultural soils, and exported 

grain would avoid a certain amount of C emission that would have otherwise occurred 

within the country.  Therefore we considered that both soil C stock changes and the C in 

exported grain contribute in mitigating CO2 emissions from the croplands.  In this study 

we considered the sum of C in grain export and soil stock changes as the apparent NEP of 

the cropland ecosystem.  

 

RESULTS 

 

C stocks in different pools 
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The observed re values reflected the temperature and precipitation influences on 

decomposition, with the highest values in the South East region and irrigated crop areas 

in the west (Figure 2).  The drought years (i.e. 1983, 1988) had the lowest re values 

during the period, reflecting the reduced decomposition during those periods, and the 

highest re values were observed during the years 1992, 1995, and 1997.  The young pool 

had a relatively very low concentration of C compared to the old pool (Figure 3), and the 

C stocks in the young pool ranged from 86-109 Tg over the 16-year period; C stocks over 

100 Tg could be observed during the years 1982, 1983, 1993, 1995, and 1997, despite the 

higher rates of decomposition as reflected in the higher re values observed in 1995 and 

1997.   The old pool had 25-35 times higher C stocks compared to the young pool, over 

the 16-year period.  The variation in the old pool fell within a very narrow range in the 

permanent cropland, increasing only by 19 Tg from the beginning to the end of the study 

period.  The overall variation in C stocks mostly reflected the variation in the young pool, 

despite the size of the pool. 

 

Temporal and spatial variation in C stocks 

 

Over the 16-year period, C stocks in the total US permanent cropland ranged between a 

minimum of 3073 Tg in 1984 to a maximum of 3105 Tg in 1997; this seemed to be 

mostly influenced by changes in the mix of crops and impacts from the interannual 

variation in weather (Figure 3).  C stocks increased by 14 Tg C from the beginning to the 

end of the period in the permanent cropland with slight interannual variability.  
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Interannual variability of C stocks was relatively low compared to that in the residue C 

inputs (Figure 4).  An alternating pattern in C inputs and C stocks could be observed in 

relation to changes in weather. For instance, the lowest C inputs were observed in 1988; 

however, the corresponding decrease in C stocks was observed in 1989.  The year-to-year 

change in C stocks mostly fell within 20 Tg, however, that of C inputs showed significant 

dampening with a year-to-year variation that ranged between 2-80 Tg over the study 

period (Figure 4).  Although there was significant variation between the C inputs and C 

stocks at crop area level (Figure 5), at entire county level, a similar pattern of spatial 

variation was observed for both C inputs and soil C stocks (Mg C ha-1
 yr-1; Figure 6).   

 

Average C stocks in US irrigated cropland (45.4 ± 0.1 Mg C ha-1 yr-1) were 9 Mg C 

higher than the rainfed cropland over the study period (36.2 ± 0.1 Mg C ha-1 yr-1) (Figure 

7).  The irrigated crop area in the US permanent cropland was 74 Mha less than the 

rainfed crop area, making up 10% of the total permanent cropland area over the study 

period. 

 

Significant spatial variation in rainfed and irrigated C stocks could be observed among 

the different Crop Production Regions (CPRs) in the US.  Irrigated cropland in the CPRs 

were relatively very low except for Far West (irrigated land about 57% of the total 

cropland), Central and Northern Plains (about 16%), Southern Plains (about 13%), and 

Delta States (12%).  Irrigated areas in North Central (0.4%) and North Eastern (<0.001%) 

regions were very low.  Although the overall country average showed higher C stock 
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values for irrigated land, region wise the same trend could not be observed (Table 1).  

Overall, at CPR level, highest C inputs and stocks were observed in the North Central, 

Far West, and Central and Northern Plains regions (Table 1 and figures 5 and 6).   

 

Comparison of the estimated C stocks with C in pedon samples 

 

C stocks in Pedon data (NRCS, 1997) for a number of samples available for a 20 cm 

depth from 15 states were compared against the ranges estimated C stocks for those states 

(Table 4).  The estimated C stocks at county level showed a relatively large variation.  

Thus the range estimated for the counties in a state was compared against the range 

observed for the number of soil samples in each state with pedon data.  The estimated 

range most of the time fell within the observed range (Table 2).  

 

Overall cropland NEP and C stock change 

 

Net Ecosystem Productivity for the US cropland includes the C uptake in NPP minus any 

C that would exit the system.  In ICBM, a fraction the previous year’s input (i.e. the 

fraction left after microbial respiration in decomposition) becomes incorporated as part of 

the current years observed C stocks.  In this study we estimated the apparent NEP (i.e. 

NPP- sum of the C stock changes and grain exports) in the permaneent cropland area in 

the US (Table 3).  The apparent NEP estimated for the total cropland ranged between 14 

to 50Tg yr-1 during the period 1994-1997.  
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DISCUSSION 

 

In this study we predicted the total C stocks at county-level for the whole US.  The aim of 

the study was to detect how much the soil C stocks in the US cropland would change due 

to addition of residue C. We did not consider any organic (manure) amendments or 

changes in tillage practices in this study.  Overall model estimated C stocks were 

compared with the C stocks from soil samples reported in the pedon database by the 

NRCS, and we studied the spatial and temporal variation of C stocks in the US cropland 

soils, in comparison to variation in the residue C inputs added from the major crops.  

 

Average C stocks observed for the total permanent cropland (89.4 Mha) in the US were 

about 3085 Tg during the 16-year period.  The observed interannual variation in C stocks 

were mostly due to variation in the young C pool, the soil pool mostly impacted by the 

residue C inputs added in the previous year. Thus any change in the residue C inputs 

added during a given year, was mostly reflected in the young soil C pool in the following 

year.  However, this trend was masked in the total C stocks in the total cropland in a 

given year, since the variation in total cropland mostly reflected the area under the 

cropland during that year.  Therefore, for all the analyses performed in this study, we 

considered the permanent cropland of the US to avoid any variation in crop area. 

 

In our analyses, we found that there was a lag between the variation in C inputs and C 

stocks; high residue C inputs in a given year was reflected in the high C stock in the 

following year (Figure 4).  Thus high C stocks (over 100 Tg) could be observed during 
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the years (i.e.1983, 1993, 1995, and 1997) that were preceded by high productivity and 

residue C inputs to agricultural soils (as described in the preceding chapter).  This trend 

also reflected the impact from the increased C inputs due to increased production towards 

the end of the period.  Similarly the years with low C inputs (e.g. 1983, 1988, and 1993) 

were followed by years that had lower C stocks.  The results confirmed the validity of the 

external influence coefficient (re) values used in predicting any impact on decomposition 

from soil climate that was driven by daily variation in weather.   

 

Another noticeable observation for the interannual variability of C inputs and C stocks 

was the less variation in C stocks compared to the interannual variability observed for the 

residue C inputs (Figure 4).  Except for a high parallel increase shown in 1993 for the 

high residue C input added in 1992, the year-to-year variation in C stocks was about half 

or less in maginitude, compared to the year-to-year variation observed for C inputs in 

most of the years.  C stocks in the permanent showed a slow but gradual increase, with 14 

Tg higher C stocks towards the end of the period (compared to the beginning).   

 

The estimated C stocks clearly predicted the expected outcome for the spatial variation in 

the C stocks among the different CPRs.  For instance, in the Far West region, where 

about 57% of the cropland in irrigated, C stocks were relatively higher compared to the 

other regions; however, in the same region, higher C stocks could be observed for the 

rainfed cropland (although the inputs were higher in the irrigated cropland; Table1).  This 

was observed especially for the Northern Pacific Coast Range, Foothills, and valleys in 

Washington and Oregon, where crops are grown under substantial soil moisture.  
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Similarly, in the North Central region where most of the cropland is rainfed (only about 

0.3% is irrigated), irrigated land had much lower C stocks compared to the rainfed 

cropland. Thus, although the overall country had higher C stock rates (Mg ha-1 yr-1) in 

irrigated cropland, region wise the opposite trend could be observed for certain regions; 

however this did not seem to have much effect at national scale, due to very low cropland 

under irrigation, in general.   

 

Due to high variability observed among the county-level C stocks within a given state, 

and lack of sufficient soil samples within the pedon database, the estimated C stocks 

could be validated marginally.   Overall, the ranges estimated seemed to tally with the 

observed (measured) low C stocks in certain states in the North East and South East 

regions (e.g, KY, MD, and NJ).  Although relatively high C stocks were found in the 

North Central region, the estimated range from ICBM was much narrower (lower) 

compared to the observed range (Table 2).  Due to high range observed for C stocks 

among the pedon samples, no proper spatial variation could be detected, other than the 

relatively low C stocks observed for certain states in South East and North East CPRs, 

and high stock values for the North Central (as described above) and Central and 

Northern Plains. Lack of substantial representation of all the CPRs in the soil samples 

used, also restricted any proper comparison for spatial variability of C stocks over the 

country.   

 

The permanent cropland of the country ranged between 70- 85% of the total cropland 

during the study period.  According to DOE/EIA (2005), the mineral soils in US cropland 
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were accumulating 52.4-51.7 Tg CO2 (i.e. 14.3-14.1 CO2-C) during 1990- 1997.  Our 

estimates for the same period ranged between 10-11 CO2-C Tg, which was only slightly 

lower than the values reported by DOE/EIA (2005), as the agricultural mineral soil C 

sink (2004).  Therefore, overall, the model seems to perform faily well, and it seems to 

correctly predict the expected interannual- and spatial variability in C stocks.  

 

We found that the NEP, or the apparent NEP in the total US cropland during the period 

1994- 1997 was about 1-4 percent of the estimated CO2-C emission from fossil fuel 

burning (USEPA, 2002; table 3).  Soil C stock change was about 20-30% of the apparent 

NEP (Table 3).  Thus our study found the impact of both soil C stocks and the overall 

cropland productivity (i.e. implications from high NPP and C inputs), on overall C 

cycling in the US cropland.   

 

Estimated CO2-C release due to residue decomposition in our study (220- 240 Tg) in the 

permanent cropland) was only slightly higher than the range illustrated by the USDA 

(2003; i.e. 200- 220 during the period 1990- 1995).  Since we did not take into account 

any other organic amendments to soils, and any influence from different crop 

management practices, the estimates from the current study could be considered as the 

baseline estimates for the apparent NEP and cropland C stocks for the US.   
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CONCLUSION 

 

The ICBM model seemed to well predict the interannual and spatial variability in C 

stocks in the US cropland soils during the study period, although the C stocks predicted 

seem to be slightly lower compared to the estimates by the DOE/EIA (2005).  The total 

soil stock predicted for the 16-year study period was about 3.1 Pg C in a depth of 20 cm 

in the cropland soils.  The interannual variability  in soil C stocks based on permanent 

cropland estimates ranged within 20 Tg over the study period, and it was much lower 

compared to the interannual variation observed for crop residue C inputs.  Based on our 

study, apparent NEP estimates calculated for the US cropland ranged between 14-50 Tg 

during the period 1994- 1997, implying the importance of C dynamics in the cropland 

soils, in the CO2 mitigation potential of the country, and in overall C cycle.  Although the 

interannual variability in C stocks occurred within a narrow range, the stocks clearly 

reflected the influences of the production (i.e. variation in the C inputs added), and 

associated changes in weather.  Our estimates are slightly lower than the studies that have 

predicted the “potential” C sequestration in the US agricultural soils. We considered a 

constant crop area (only the permanent cropland) for this analysis, and did not take into 

account any influence from specific management practices or the impacts in the land use 

changes that occurred in the croplands (e.g. CRP) within the same period of time. Thus 

findings of our study reflect more of  “detrended”, baseline C stock estimates, that would 

reflect the existing short-term C dynamics in croplands that are useful in climate change 

policy and inventory purposes.  
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Table 1.  Average C inputs and stocks (Mg ha-1) in Crop Production Regions (CPRs) in the US cropland (i.e. all crops)  
 
 CNP DS FW NC NE SE SP 
 Input Stock Input Stock Input Stock Input Stock Input Stock Input Stock Input Stock 
Rainfed 1.8 ± 0.2 35 ± 0.1 1.8 ± 0.2 15 ± 0.1 2.2 ± 0.2 75 ± 0.3 3 ± 0.4 43 ± 0.2 2 ± 0.2 29 ± 0.2 1.9 ± 0.2 19 ± 0.2 1.6 ± 0.1 19 ± 1.6 
Irrigated 3.6 ± 0.3 52 ± 0.7 2 ± 0.1 15.2 3.5 ± 0.2 44 ± 0.2 0.9 ± 0.2 10 ± 0.1 0.9 ± 0.2 12 ± 0.1 1.6 ± 0.2 19 ± 0.2 3.5 ± 0.2 39 ± 3.5 
Overall  2.1 ± 0.2 37 ± 0.2 2 ± 0.2 15 ± 0.1 2.9 ± 0.2 58 ± 0.2 3 ± 0.2 43 ± 0.2 2 ± 0.2 29 ± 0.2 1.9 ± 0.2 13 ± 0.2 1.6 ± 0.1 21 ± 1.9 
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Table 2.  Estimated and observed (field measured) ranges of state-level soil C stocks (Mg 
ha-1) for a depth of 20 cm. 
 
State CPR Estimated Range Observed range No. of samples 
IA NC 26- 55 44- 78 4 
IL NC 18- 62 20- 119 55 
IN NC 19- 52 32- 46 3 
KS CNP 14- 52 14- 48 16 
KY SE 10- 33 26- 42 3 
MD NE 20- 34 15- 44 8 
MI NC 21- 62 61- 104 4 
MN NC 17- 53 41- 149 6 
MO NC 10- 36 24- 44 11 
NE CNP 12- 72 18- 66 21 
NH NE 20- 29 69- 102 3 
NJ NE 10- 36 16- 30 4 
OH NC 16- 50 42- 102 8 
VT SE 21- 26 34- 66 10 
WI NC 21- 51 17- 87 16 
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 Table 3.  Values of the variables relevant to in NEP calculation for permanent cropland only. 
NPP: Net Primary Production; grain CO2-C:  CO2 respired from consumed grain; FF: Fossil fuel; NEP: Net Ecosystem Productivity. 
 

Year NPP 
Tg 

C inputs 
Tg 

Grain C Grain 
Export 
Tg 

grain C 
consumed 

CO2_C 
from soil 
respiration 
Tg 

total 
C_stocks 
Tg 

CO2 from 
FF burning 
Tg 

Apparent 
NEP Tg (C 
stock change + 
export) 

1994 456.8 207.4 249.4 27.4 222.0 220.4 3099.8 1353.6 14.4
1995 400.9 250.7 150.2 38.8 111.4 240.5 3086.8 1366.1 49.1
1996 430.7 219.3 211.4 34.1 177.2 222.3 3097.1 1416.8 31.2
1997 437.9 235.7 202.2 29.8 172.3 224.6 3094.1 1435.4 40.9
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Figure 1.  Model structure of the Introductory Carbon Balance Model (ICBM). i = annual 

carbon inputs (Mg ha-1), kY = decomposition constant for ‘young’ organic matter, Y (i.e. 

fraction of Y that decomposes in a year; yr-1), kO = decomposition constant for ‘old’ 

organic matter, O (i.e. fraction of O that decomposes in a year; yr-1), re = external (i.e. 

climate, management) influence coefficient (dimensionless), and h = humification 

coefficient (dimensionless).  Yss and Oss denote the steady state condition for Young and 

Old soil C pools (Source: Andren and Kätterer, 2001, 2004). 
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Figure 2. External influence coefficient (re) estimated from irrigated (top left), rainfed 
(top right), and area weighted average (using combined rainfed and irrigated areas; 
bottom). 
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Figure 3.  Variation in young, old and total C pools in the US permanent cropland.  The 
variation in the C stocks in the permanent cropland reflected the variation in the young 
pool.  
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Figure 4. Interannual (year to year) variation in C inputs and soil C stock in the 
permanent cropland in the US 
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Figure 5. The spatial variation and magnitude of C inputs and stocks per cropland ha in 
1997 
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Figure 6. The magnitude of C inputs and stocks per county ha in 1997.   
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Figure 7.  C stocks (Mg ha-1) in the US irrigated, rainfed and total cropland. 
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