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ABSTRACT OF DISSERTATION

Moist Synoptic Transport of CO2 Along Midlatitude Storm Tracks, Transport
Uncertainty, and Implications for Flux Estimation

Mass transport along moist isentropic surfaces on baroclinic waves represents an

important component of the atmospheric heat engine that operates between the equator

and poles. This is also an important vehicle for tracer transport, and is correlated with

ecosystem metabolism because large-scale baroclinicity and photosynthesis are both driven

seasonally by variations in solar radiation. In this research, I pursue a dynamical framework

for explaining atmospheric transport of CO2 by synoptic weather systems at middle and high

latitudes. A global model of atmospheric tracer transport, driven by meteorological analysis

in combination with a detailed description of surface fluxes, is used to create time varying

CO2 distributions in the atmosphere. Simulated mass fluxes of CO2 are then decomposed

into a zonal monthly mean component and deviations from the monthly mean in space and

time. Mass fluxes of CO2 are described on moist isentropic surfaces in order to include

transport along frontal systems in the eddy-terms rather than in the mean.

Synoptic weather systems transport large amounts of CO2 north and south in north-

ern mid-latitudes, up to 1 PgC month−1 during winter when baroclinic waves ramp up.

During boreal winter when northern plants respire, warm moist air, high in CO2, is swept

upward and poleward along the east side of baroclinic waves and dumped into the polar

vortex, while cold dry air, low in CO2, that had been transported into the polar vortex

earlier in the year is swept equatorward. Synoptic eddies strongly reduce seasonality in the
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biologically active mid-latitudes by 50% of that implied by net ecosystem exchange while

amplifying seasonality in the Arctic. Transport along stormtracks is correlated with rising,

moist, cloudy air, which systematically hides this CO2 transport from satellites. Meridional

fluxes of CO2 are of comparable magnitude as surface exchange of CO2 in mid-latitudes,

and thus require careful consideration in (inverse) modeling of the carbon cycle.

Because synoptic transport of CO2 by frontal systems and moist processes is unob-

served and poorly represented in global models, it may be a source of error for inverse flux

estimates. Uncertainty in CO2 transport by synoptic eddies is investigated using a global

model driven by four reanalysis products from the Goddard EOS Data Assimilation System

for 2005. Eddy transport is found to be highly variable between models, with significant

seasonal biases of up to 0.2 PgC, representing up to 50% of fossil fuel emissions, caused

primarily by differences in grid spacing and vertical mixing by moist convection and PBL

turbulence. To test for aliasing of transport bias into inverse flux estimates, synthetic satel-

lite data is generated using a model at global mesoscale resolution and inverted using a

global model run with coarse transport. An ensemble filtering method called the Maximum

Likelihood Ensemble Filter (MLEF) is used to optimize fluxes. Flux estimates are found to

be highly sensitive to transport biases at pixel and continental scale, with errors of up to

0.5 PgC year−1 in Europe and North America.

Nicholas C. Parazoo
Department of Atmospheric Science
Colorado State University
Fort Collins, Colorado 80523-1371
Summer 2011
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Chapter 1

BACKGROUND AND OBJECTIVES

1.1 Background

CO2 emissions from fossil fuel combustion, including small contributions from ce-

ment production and gas flaring, were about 8.7+/-0.5 PgC yr−1 in 2008, with emissions

increasing at a rate of 3.4% per year between 2000 and 2008 [Le Quere et al., 2009, see

Figure 1.1]. Fossil fuel emissions are expected to double over the next 50 years under busi-

ness as usual conditions [Pacala and Socolow, 2004], and likely more as new economies

emerge [Le Quere et al., 2009], causing atmospheric CO2 concentrations to nearly triple

from pre-industrial levels. It is even worse considering land use change (LUC) emissions

due to anthropogenic activities such as deforestation, logging, and intensive cultivation of

cropland soils (see Figure 1.1b). Although there is much interannual variability in LUC

fluxes, especially in tropical regions, the 2008 LUC emissions were about 1.2 PgC yr−1,

bringing total anthropogenic CO2 emissions to 9.9+/-0.9 PgC yr−1 in 2008.

Rising CO2 is expected to alter radiative forcing, warm climate, and cause significant

global climatic changes in the near future, including natural and socioeconomic impacts.

Projections of future CO2 levels and the associated climate forcing depends strongly on our

scientific understanding of both the anthropogenic and natural components of the carbon

cycle and our ability to accurately predict future sources and sinks of carbon [Cox et al.,

2000; Friedlingstein et al., 2006; IPCC, 2007]. The existing network of surface in situ CO2

measurement stations [GLOBALVIEW-CO2, 2009] suggest that on average 43% of total

CO2 emissions each year between 1959 and 2008 remain in the atmosphere (see Figure 1.1a,
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Figure 1.1: Components of the global CO2 budget [taken from Le Quere et al., 2009].

Le Quere et al. [2009]). The remaining fraction, roughly 4-5 PgC yr−1, is absorbed naturally

by land and ocean sinks (see Figure 1.1 c and d, respectively). Atmospheric and ocean

observations constrain the global land sink to 2.6+/-0.7 and the ocean sink to 2.2+/-0.4
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PgC yr−1 for 1990-2000 [McNeil et al., 2003; Manning and Keeling, 2006; Canadell et

al., 2007; Denman et al., 2007; Gruber et al., 2009]. This natural sink, however, is not

guaranteed to grow or even sustain its current capacity [Fung et al., 2005; Le Quere et

al., 2009]. Natural emissions might actually increase, for example, as a result of already

observable rapid warming in parts of the Arctic [Hinzman et al., 2005] due to mobilization

of carbon currently stored in permafrost [Zimov et al., 2006; Khvorostyanov et al., 2008].

One of the first studies to determine that a combination of terrestrial and oceanic

processes are responsible for net removal of CO2 from that atmosphere was Tans et al.

[1990], who compared relatively well known fossil fuel emissions and the corresponding

north-south gradient in atmospheric CO2 as determined by a three-dimensional atmospheric

general circulation model to the north-south gradient observed from a global network of

flask measurements. Combined with pCO2 measurements to constrain the ocean sink, this

technique implied a Northern Hemisphere (NH) terrestrial sink, but was unable to reveal

information about regional processes that determine the sink. It is understanding regional

processes, and how they determine the time and spatially varying source/sink distribution

on synoptic, seasonal, interannual (e.g., Figure 1.1c) and climatic time scales, that has

motivated more recent (∼ mid 1990’s to present) research.

Variations of atmospheric CO2 contain information about sources and sinks which

air interacts with as it is transported from place to place. Atmospheric inverse modelers

combine tracer transport models with atmospheric measurements of CO2 mixing ratio to

optimize estimates of the strength and spatiotemporal distribution of sources and sinks

[Gurney et al., 2002; Rödenbeck et al., 2003; Baker et al., 2006]. Results are limited by

(1) data availability and precision; (2) model fidelity; and (3) optimization technique. The

following sections describe in more detail these three important components of inversion

systems.
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1.1.1 Atmospheric Observations

Atmospheric observations of CO2 mixing ratio include in situ and remotely sensed

measurements. The in situ network consists of surface observations by flask (weekly) and

continuous (hourly) instruments, which measure at a fixed location continuously in time,

as well as airborne measurements taken from aircraft, which can sample most parts of

the atmosphere but tend to have fair weather bias. Remotely sensed measurements are

typically column integrated and taken from aircraft or satellite. Data accuracy and density

are important constraints for inversions, as illustrated by the inversion intercomparison

experiment, TransCom. For example, in an annual mean inversion of flask data for 22

source regions, TransCom found uncertainties in surface flux estimates related to data

sparsity ranging from 0.2-1.1 GtC yr−1 [Gurney et al., 2002], which represents as much as

25% of global sink estimates.

The TransCom 3 experiment, described in Gurney et al. [2002, 2003, 2004], was

based on flask measurements, which are taken under “clean-air” or “baseline” conditions in

order to sample air representative of large-scale air masses. While flasks are ideally suited

for making precise measurements of background concentrations, they are not designed to

measure continental or any kind of fine scale variations due to nearby terrestrial sources

and sinks. Continuous measurements are therefore a nice complement to the flask network,

as can be seen in Figure 1.2,. Continuous measurement sites have existed for a number of

years and the network continues to grow, especially in northern middle latitudes, and are

extremely desirable for carbon cycle studies in that they are (1) collected on site and can

sample more frequently (i.e., hourly) in time; (2) well-calibrated and high precision (∼0.1

ppm); (3) typically located over continents close to terrestrial source and sinks; and (4) in-

fluenced by strong synoptic signals that contain upstream surface flux information. Because

of continuous on-site monitoring, they are especially useful for sampling CO2 mixing ratios

contained in air masses advecting across continents at synoptic scales (∼1000km), with total

upstream footprint proportional to measurement height above the surface [Bakwin et al.,
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Figure 1.2: World map showing the NOAA ESRL/GMD CCGG Cooperative Air Sampling
Network

1998]. Tall tower measurements from National Oceanic and Atmospheric Administration

(NOAA) Earth System Research Laboratory (ESRL) Global Monitoring Division (GMD),

for example, can measure continuously at up to 400 m above the surface and can “feel”

the influence of surface fluxes for hundreds of kilometers, while surface measurements are

typically much closer to the ground (i.e., < 30 m above ground level) and more strongly

influenced by local processes.

There is an interesting relationship between atmospheric measurements and surface

fluxes. It is desirable for measurements to contain as much information about upstream

sources and sinks as possible. Other than process based land surface models, mixing ratio

measurements are our primary source of information regarding ecosystem scale fluxes of
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CO2. Measurements have a higher probability of influence from larger scales the higher a

measurement is above the surface. This is where the tradeoff begins. In general, the more

information we want to know about surface fluxes (i.e., the higher up and more frequent a

measurement is) the better we (i.e., modelers) have to be at representing transport between

flux and concentration.

Nevertheless, use of high frequency data in CO2 inversions has been shown to reduce

overall flux uncertainties [Law et al., 2002], even more so when combined with monthly mean

flask observations [e.g., Rödenbeck et al., 2003]. While continuous measurements improve

our process-based understanding of local and upstream terrestrial sources and sinks [Gloor

et al., 2001; Worthy et al., 2003; Geels et al., 2004; Hurwitz et al., 2004], they contain

signals that result from complex atmospheric processes. At first this may seem a bad thing,

because this presents an interesting challenge for models of the atmosphere to correctly

represent these processes (more detail in Section 1.1.2); that being said, much has been

learned about the carbon cycle and numerical models of the carbon cycle as a result of

these measurements. It is also worth mentioning here that aircraft measurements are very

useful for profiling vertical distributions and have helped further constrain carbon budgets

at regional scales when combined with tower measurements [Lauvaux et al., 2008].

A major shortcoming of the in-situ network, as seen in Figure 1.2, is that large

geographic data gaps exist, especially over the oceans, in the Southern Hemisphere (SH)

and in the tropics. The surface network, despite continuous monitoring at high precision, is

insufficient to correct surface fluxes at regional scales. Satellites measure column averaged

CO2 mixing ratio with good spatial coverage, thus complementing data poor regions of

surface measurements, but have strict precision requirements for top-down inversion because

source and sink information is contained in column averaged variations, which are small

(and diluted) in contrast to Planetary Boundary Layer (PBL) variations where surface

networks reside. In an effort to evaluate the potential usefulness of remotely sensed mixing

ratios, synthesis inversion models indicate that regional surface flux uncertainties could be
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reduced substantially if in-situ data are combined with column-integrated measurements

with precision of <1%, or ∼3 ppm [Rayner and O’Brien, 2001; Houweling et al., 2004].

Miller et al. [2007] estimate that precisions of 1-2 ppm are necessary to monitor carbon

fluxes at regional scales.

The first space-based measurements of CO2 were performed by NOAA’s Television

Infrared Observation Satellite Operational Vertical Sounder (TOVS, Smith et al. [1979]),

which is able to retrieve seasonality and growth rate with some reliability [Chedin et al.,

2002, 2003] but was not originally designed to monitor CO2. Later studies found that

TOVS was not ideally suited for surface flux inversion [Chevallier et al., 2005]. Like TOVS,

the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIA-

MACHY, Bovensmann et al., [1999]) was not designed specifically for CO2 retrieval. Unlike

TOVS, SCIAMACHY uses short wave near infrared spectrometers to measure CO2. SCIA-

MACHY is thus more sensitive to surface variations and ultimately found to better constrain

surface fluxes given certain levels of precision [Houweling et al., 2004]. Observations from

the Atmospheric Infrared Sounder (AIRS, Aumann and Pagano [1994]), which uses a ther-

mal infrared spectrometer, are higher precision and high in number, but are mostly sensitive

to the upper troposphere, making flux retrieval difficult.

High-precision with sensitivity down to the surface is possible when taking advantage

of reflected sunlight and clear-sky conditions [O’Brien, 1990; Houweling et al., 2004]. Re-

cently, two satellites have been designed specifically to measure the column-averaged dry air

mole fraction of CO2 (XCO2) at high (1) precision, (2) surface sensitivity, (3) global cover-

age and (4) regional scale resolution, all of which are necessary to characterize CO2 sources

and sinks on regional scales and thus provide the most realistic opportunity to supplement

data poor regions: Japan’s Greenhouse Gases Observing Satellite (GOSAT, Kuze et al.,

[2009]) and the National Aeronautics and Space Administrations (NASA) Orbiting Carbon

Observatory [OCO, Rayner et al., 2002; Crisp et al., 2004; Houweling et al., 2004; Baker et

al., 2006b; Miller et al., 2007; Chevallier et al., 2007]. GOSAT was launched successfully
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in January 2009. OCO failed to launch in February 2009; however, the OCO design had

certain strong points that have led to a scheduled relaunch (OCO-2) as soon as 2012. In

particular, OCO-2 would measure more frequently than GOSAT (180 vs. 13.4 cross-scans

per minute) with a smaller field of view (∼2 km2 vs. ∼ 100 km2) and thus ought to find

more cloud free scenes [Crisp et al., 2004].

The previous instruments discussed use passive measurements based on shortwave

or thermal infrared sensing, with shortwave (SCIAMACHY, GOSAT, and OCO) providing

more information than thermal (AIRS) and OCO providing more information than GOSAT

[Hungershoefer et al., 2010]. Another instrument being explored that may overcome certain

issues with OCO and GOSAT and provide even better surface flux constraint is a new

satellite-based laser-sounder. Such an instrument would use Light Detection and Ranging

(or LIDAR) technology to measure CO2 absorption at nadir in laser pulses sent from the

satellite to the surface and back. In this way CO2 is measured actively (carries own light

source in laser), allowing continuous measurements during day and night, over land and

ocean, throughout all latitudes and seasons, with less sensitivity to aerosol and thin clouds

yet strong sensitivity to the lower troposphere. NASA’s Active Sensing of CO2 Emissions

over Nights, Days, and Seasons (ASCENDS, Abshire et al. [2008]) and the European

Space Agency (ESA) Advanced Space Carbon and Climate Observation of Planet Earth

(A-SCOPE, Ingmann, [2009]) are two promising missions under consideration.

Nevertheless, cloud contamination does represent a problem for remote measurements

from space, and using column satellite measurements to represent a transport model grid

column introduces temporal, spatial, and local-clear sky sampling errors into inversions.

Since satellite measurement require clear-sky conditions, systematic differences in atmo-

spheric CO2 concentration between clear and cloudy conditions introduces sampling biases

of up to -0.2 to -0.4 ppm into tracer transport inversions that use satellite CO2 products

to represent temporal averages [Corbin and Denning, 2006]. Spatially coherent biases as

small as a few tenths of ppm alters flux estimates by a few tenths of a gigaton of carbon
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[Chevallier et al., 2007; Miller et al., 2007]. Spatial representation errors of mixed layer

average CO2 can reach 1-2 ppm for a typical 200-400 km horizontal resolution grid cell,

due to unaccounted for horizontal spatial heterogeneity [Gerbig et al., 2003], while column

CO2 spatial representation errors can reach ∼0.6-0.7 ppm over the land and ∼0.2-0.3 ppm

over the ocean [Lin et al., 2004], with much seasonal and geographical sensitivity [Miller et

al., 2007]. Spatial and local clear-sky errors tend to increase when a single satellite track

is used to represent a coarse (450 x 450 km) verses fine (100 x 100 km) grid column, with

local clear-sky errors biased and large (> 2ppm) in North America [Corbin et al., 2008].

Spatial and clear-sky sampling errors are attributed partly to differences in NEE on

clear and cloudy days as well as surface heterogeneity, but mostly to differential advection

by synoptic systems on clear and cloudy days, leading to the largest clear-sky biases in mid-

latitude regions [Corbin et al., 2008]. This is not surprising considering CO2 observations

show large day-to-day CO2 variations associated with passing weather disturbances and

horizontal and vertical mixing along fronts [Parazoo et al., 2008]. Since frontal systems

create large gradients of CO2 that are masked by clouds and thus more prone to reductions

of sample size, inversions that use satellite measurements to represent coarse regions may

incur large and biased spatial and local clear-sky errors. Considering that inversions are

influenced by biases as small as a tenth of a ppm in the total column [Chevallier et al.,

2007; Miller et al., 2007] and sampling errors grow as large as 2 ppm with a negative bias

in coarse grid columns of NH mid-latitudes [Corbin et al., 2008], it is recommended that

transport models be run at the finest possible horizontal grid spacing to avoid introducing

large errors and bias. Improved grid spacing, however, is likely just one of several factors

to account for when considering errors due to transport bias.

1.1.2 Transport Models

Although improvements to the global measurement network reduce uncertainty in

inverse flux estimates, accounting for other unknowns such as fossil fuel emissions, wild
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fires, deforestation, land use change, interannual climate variability, and other unaccounted

for carbon reservoirs and processes in the carbon budget contribute additional uncertainty.

Variable inversion setup, including surface flux prior estimates, transport model choice and

optimization technique (discussed in Section 1.1.3), has made it difficult to reconcile dif-

ferences in inverse estimates [Peylin et al., 2002]. The model intercomparison experiment

widely known as TransCom3 was designed specifically to isolate the effect of differences

in transport using common surface flux “prior” estimates and atmospheric observations.

TransCom3 revealed a terrestrial carbon sink distributed evenly amount NH continents.

The magnitude of the sink, however, was sensitive to transport differences among 16 dif-

ferent models, and led to the conclusion that simulated transport is one of the greatest

sources of uncertainty in inversions [Gurney et al., 2002, 2003, 2004; Baker et al., 2006].

Since transport models are the primary link between atmospheric measurements and surface

fluxes, transport uncertainty reduces the ability to fully utilize surface and satellite data

[Houweling et al., 2010]. The most common tracer transport modeling framework to date

as been global chemistry transport models (CTMs), which use offline stored meteorology

fields derived from other atmospheric models and/or data analysis systems.

Factors that can degrade CTM performance include (1) horizontal and vertical grid

spacing; (2) parameterization of “subgrid-scale” processes; (3) numerical errors due to finite-

differencing algorithms; and (4) data assimilation techniques. An example from (2) above

is fine-scale vertical mixing processes such as moist convection and turbulent mixing in

the PBL, which typically occur at scales smaller (<10 km) than most global transport

models can resolve and thus cannot be solved explicitly. These processes must instead be

solved through parameterization - semiempirical statistical theory governing how subgrid-

scale processes manifest themselves on the resolved grid - which is highly variable between

models, not as easily constrained in reanalysis products as resolvable flows, and therefore

highly uncertain.

Covariance between subgrid-scale atmospheric mixing and biological processes is par-
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ticularly troubling. It has long been recognized, for example, that seasonal and diurnal

covariance between terrestrial ecosystem metabolism and fine-scale vertical transport in

the atmosphere is a strong determinant of vertical structure in CO2 [“CO2 Rectifier,” Den-

ning et al, 1995, 1996, 1999]. Numerical treatment of subgrid-scale vertical mixing continues

to be a leading source of uncertainty in CO2 inverse models [Denning et al, 1999; Gurney

et al, 2003; Yi et al, 2004; Helliker et al, 2004; Baker et al, 2005; Stephens et al, 2007; Yang

et al., 2007].

Another process which controls the distribution of CO2 on synoptic to seasonal

timescales is transport by baroclinic waves along the mid-latitude storm track. Like the

PBL-modulated CO2 rectifier, synoptic transport of CO2 involves strong vertical motion by

turbulent mixing and moist convection within frontal cloud bands, and is correlated with

ecosystem metabolism because large scale baroclinicity and photosynthesis are both driven

seasonally by variations in solar radiation. Baroclinic wave activity is enhanced in winter

when respiration and decomposition dominates ecosystem metabolism, and is suppressed in

summer when photosynthesis dominates. Unlike the CO2 rectifier, transport by baroclinic

waves involves a strong meridional component of motion. Tracer transport by baroclinic

waves thus follows the path of “slantwise convection” or “slantwise ascent” [e.g., Emanuel,

1988] and is intimately tied to condensation and precipitation processes [Emanual, 1988;

Kuo, 1991].

Before analysis of the role of baroclinic waves in the carbon cycle, background de-

scribing the origin of baroclinic waves is provided. Net tropical heating (incoming solar

radiation exceeds outgoing longwave radiation (OLR)) and polar cooling (OLR exceeds in-

coming solar) leads to an energy surplus at low latitudes and deficit at high latitudes (see

Figure 1.3). Net heating of the atmosphere in low latitudes and cooling in high latitudes

generates meridional temperature gradients and a quantity referred to as zonal available

potential energy, or energy available within some distribution of atmospheric mass for con-

version to kinetic energy under adiabatic flow. Earth’s rapid rotation inhibits meridional
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Figure 1.3: Earth’s net radiation budget [courtesy of Pearson Prentice Hall, Inc].

flow in the atmosphere in mid-latitudes such that temperature gradients cannot be effi-

ciently weakened by a steady symmetric circulation. The symmetric circulation is unstable,

and nature chooses baroclinic waves as a more efficient way of transporting energy poleward,

resulting in a weaker meridional temperature gradient.

Baroclinic waves, as discussed by Lorenz [1955] and Peixoto and Oort [1992], result

from conversion of zonal available potential energy into eddy available potential energy

by growing baroclinic disturbances, which enhance temperature variance around a latitude

circle. Eddy available potential energy is then converted into eddy kinetic energy as un-

stable baroclinic waves cause the growth of quasi-horizontal, quasi-geostrophic eddies of

cyclone scale through sinking of colder portions of eddies and rising of the warmer portions.

Baroclinic instability is the dominant mechanism for generating eddy transport, through

cyclones and anticyclones, in mid-latitudes where vertical wind shear is strongest. Station-

ary eddies, forced by temperature contrasts due to zonal inhomogeneities along mountains

and land-sea boundaries, also transport energy poleward, mostly in the NH.

Baroclinic waves are most common poleward of tropical latitudes where the Coriolis

force is large and a westerly thermal wind can be established between warm low latitudes
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and cool high latitudes. The embedded cyclones and anticyclones are responsible for most

of the synoptic scale weather in NH and SH mid-latitudes [Wallace et al., 1998; Trenberth,

1991], as well as precipitation along surface fronts and moist conveyors [Stewart et al.,

1998; Eckhardt et al., 2004]. Mid-latitude cyclones also provide the energy necessary for

trace gas transport. Several case studies have reported transport events of chemical trace

constituents associated with moving cyclonic systems [Berkowitz et al., 1996; Merrill and

Moody, 1996; Moody et al., 1996; Wang and Shallcross, 2000]. Some of these events consist

of long range transport (∼1000’s km) between continents within warm sector flow ahead of

advancing cold fronts.

Following Carlson [1998], the classic mid-latitude cyclone is roughly 1 km deep, 100’s

km wide, and composed of three main airstreams: (1) warm conveyor belt (WCB), (2) cold

conveyor belt (CCB), and (3) dry intrusion (DI). WCBs and DIs, depicted in Figure 1.4,

have strong meridional component of motion necessary for meridional tracer transport. The

DI consists of cold dry air that descends behind the cold front, generally equatorward, from

the upper troposphere (∼300 mb) to the middle to lower troposphere (∼600 mb). The

Figure 1.4: Illustration of frontal transports associated with a baroclinic wave.

CCB flows ahead of the warm front and splits into two separate anticyclonic and cyclonic
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branches [Schultz, 2001]. WCBs consist of a poleward flow of warm moist air that originates

in subtropical latitudes near the surface (∼800 mb) in the warm sector ahead of the surface

cold front and ascends above the surface warm front into the upper troposphere (∼300

mb) at higher latitudes. WCBs are responsible for most of the cyclones meridional energy

transport and have the strongest components of vertical motion of the three air streams.

Eckhardt et al. [2004] constructed a 15 year climatology of WCBs from reanalysis data

and found that WCBs tend to originate between 25-45◦ latitude in either hemisphere, occur

more frequently during winter than summer, and are almost always found within 1000 km

of a cyclone center (quasi-stationary cyclones (i.e. stationary waves) as well as traveling

cyclones (i.e., baroclinic or synoptic waves)) and in particular cyclones with strong diabatic

heating.

It is not surprising then that WCBs are recognized as the primary mechanism for

rapid air pollution transport throughout the NH mid-latitudes [Bethan et al., 1998; Prados

et al., 1999; Parrish et al., 2000; Fischer et al., 2002; Miyazaki et al., 2003; Stohl et al., 2003;

Cooper et al., 2004]. Poleward transport of pollutants by rising warm air following WCBs

is compensated by equatorward transport by sinking of cold dry air along DIs. Transport of

chemical trace constituents by DIs almost always has a stratospheric component, and has

been shown to advect ozone and dry, thermodynamically stable air from the stratosphere

into the upper, middle, and sometime lower troposphere [Parrish et al., 2000; Cooper et al.,

2002]. Since WCBs and DIs tend to form in different parts of their world, the histories of

their respective air masses are different, which means they almost certainly have different

CO2 concentrations.

An increasingly important issue for inversion modelers is the ability of CTMs to

simulate synoptic variations associated with fronts, WCBs and DIs as they are confronted

more with high frequency continuous observations. Patra et al. [2008] analyzed synoptic

variations in 25 transport models. Several of the models were actually run at two different

horizontal grid spacings with the same primary meteorology, such that grid spacing effects
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were isolated from other factors. The authors found that simulations at finer grid spacing

produced a better match with observed CO2 variations at most of the 25 sites in the

study, mostly because finer grid models were able to sample closer to the measurement site

location. One test indicated that the better match for finer grids was independent of surface

flux resolution, although Geels et al. [2007] showed that traditional large scale transport

models are not sufficient to resolve fine-scale features associated with fossil fuel emissions.

The overall conclusion was that first-order transport mechanisms are fairly well represented

in CTMs, but that finer grid spacing should be employed when possible.

For example, a typical synoptic weather pattern has a horizontal scale of approxi-

mately 1000 km. A “coarse” grid model run at 250 km resolution will sample a synoptic

system 16 times every time step, which is more than enough to capture the large scale be-

havior. A “fine” grid model run at 50 km resolution will sample the same synoptic system

400 times! This means a fine grid model is 25 times more likely to capture important vari-

ations and gradients that might otherwise average out inside of a coarse grid column, while

the coarse model will tend to smooth out important spatial gradients. Coarse grid models

may simulate overall structure but miss the strength, timing, and location of important

variations. The timing issue is of particular relevance for interpreting observed synoptic

variations, since gradients of 10 ppm or more may occur at sub-pixel scale [e.g., Chen et

al., 2004; Parazoo et al., 2008; Wang et al., 2008].

Figure 1.5 demonstrates the importance of grid spacing for a synoptic system with

embedded mesoscale features. Shown is a cold front with a divergence / convergence couplet

(purple and red lines) and clouds (depicted by white shading). Overlaid are grid points with

50 km grid spacing. Certain features, such as the convergence zone and pre-frontal clouds,

are fairly well resolved. The divergence zone is very weakly resolved. Other features, such

as post-frontal clouds and the location of the cold front, are only represented by a couple

grid points, and will probably not show up in the model circulation. This demonstrates

that overall storm structure is resolved, but smaller features associated with the storm are



16

unresolved at certain grid spacing.

Figure 1.5: Model representation of a cold front and associated divergence / convergence
couplet (courtesy The COMET Program, http://www.meted.ucar.edu/).

As demonstrated in Figure 1.5, many important processes are not resolved even at

what is considered fine grid spacing for global models. While cold fronts may be hundreds

of km’s long, they are typically less than 100 km wide, so many features are unlikely to show

up in global models. Donnell et al. [2001] show, for example, a case study where frontal

ascent of tracer is confined to a 60 km wide region. Even at 50 km’s such circulations

are not resolvable. Fine scale vertical transport by PBL turbulence and moist convection

influence frontal lifting and slantwise ascent. Since these processes must be parameterized,

they contribute additional uncertainty. Turbulent mixing is essential for boundary layer

ventilation of tracer to levels that can be penetrated by conveyor belts [Donnell et al., 2001;

Sinclair et al., 2008]. WCBs are heavily influenced by moist processes due to the influx of

warm moist air out of the subtropics. Moist processes are found to enhance ascent along

WCBs [Sinclair et al., 2008], an unsurprising result given the large amount of latent heat
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release associated with condensation. Small inaccuracies in convective representation that

specify total latent heat release can lead to large inaccuracies in numerical simulation of

dynamical systems where latent heat release is important [Emanuel, 1988]. While it is

difficult to test the specific influence of moist convective parameterization on meridional

transport of tracer along WCBs without a full blown case study, it is important to consider

model differences in meridional transport of moisture, since they may lead to large errors

in transport by baroclinic waves.

1.1.3 Optimization Technique

Spatial and temporal gradients of observed CO2 mixing ratio are directly related to

surface carbon fluxes. In-situ and satellite observations can exploit surface flux information

contained in synoptic signals if they are modeled well. Unfortunately, there is no standard

way of quantifying transport uncertainty, so even if processes aren’t modeled well, inversions

must assume perfect transport. Nevertheless, methods are needed to optimally combine

models and observations to provide estimates of carbon fluxes and their uncertainties. The

scale at which surface fluxes may be optimally inferred therefore depends on the grid spacing

of the transport model and prior information, the number and frequency of observations,

and the optimization technique, the latter of which has tended to progress along with (or

adapt to) the former components.

Early inversions solved for CO2 fluxes at monthly and annual time scales over conti-

nental scale regions using monthly mean in-stu data from networks such as GLOBALVIEW-

CO2 [e.g., Rayner and Law, 1999; Bousquet et al., 2000; Peylin et al., 2002; Gurney et al.,

2002; Law et al., 2003]. “Bayesian synthesis” or ”batch mode” approaches were used to

solve for a single vector of unknowns (spatio-temporal distribution of surface CO2 flux) that

maximized consistency between atmospheric observations and a priori (or “background”)

surface fluxes estimated from “bottom-up” approaches. In Bayesian synthesis, a cost func-

tion (defined in Section 2.6.3) consisting of two components is optimized. The first term of
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the cost function involves the observations and controls the difference between the observed

and predicted CO2 mixing ratios. The second term constrains the solutions by an a priori

flux distribution, which is necessary to stabilize the solution when the inversion problem

is under-constrained. A linear system of equations, representing the relationship between

unknown (CO2 flux) and known (atmospheric CO2 observations) quantities, is solved in

one step using singular value decomposition to invert large matrices such that fluxes for

all source regions are estimated at all times simultaneously using all observations. The

TransCom3 experiment is an example of a large-region inversion in which the globe is di-

vided into 22 regions, consisting of 11 land and 11 ocean regions [Gurney et al., 2002]. Such

large regions were necessary at the time because of the sparseness of the in situ network.

This technique is mathematically overdetermined because the number of unknowns is much

less than the available observations.

Large-region inversions work well for solving for a set of relatively few unknowns be-

cause they are computationally efficient, but likely lead to aggregation errors [Kaminski et

al, 2001; Engelen et al., 2002] because atmospheric CO2 is sensitive to the distribution of

sources and sinks within large basis regions. New approaches were needed to supplement

large-region estimates to solve for more unknowns with the same number of observations

to improve the detail of fluxes. Grid scale inversions are an example of such an approach.

Large-region inversions like TransCom3 are essentially grid point inversions, except that

grid points are perfectly correlated in space in a region and the number of regions is order

of magnitudes smaller than the number of grid points. In“pixel-scale” grid scale inversions,

if grid boxes are assumed to be uncorrelated, the problem becomes mathematically under-

determined because the number of unknowns exceeds the available observations, but can

be solved by the priors. Since it is not desirable for inversions to be too heavily weighted

by priors, grid-scale inversions must compromise by correlating grid cells.

Grid scale inversions have become a very popular technique for estimating CO2 fluxes

[Kaminski et al., 1999; Houweling et al., 1999; Rödenbeck et al., 2003; Peylin et al., 2005].
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Rödenbeck et al. [2003] performed a grid scale inversion at 10◦ longitude by 8◦ latitude by

accounting for unique spatial covariance of flux uncertainties over land and ocean. Geosta-

tistical techniques use Bayesian methods that replace prior flux estimates with prespecified

covariance structure from vegetation cover, leaf area index, greenness fraction, etc., that

varies with the mean behavior of the fluxes [Michalak et al., 2004]. This technique acts as

a good independent estimate to bottom-up estimates. Peylin et al [2005] used continuous

measurements to estimate daily CO2 fluxes at the model grid scale over Europe.

Bayesian techniques worked well with the relatively sparse observation network. Each

new year brings with it more surface measurements at hourly resolution and huge arrays of

satellites measurements at sub-hourly resolution, which together increases the observation

vector beyond the capacity of bayesian techniques. Given that enhanced observation density

will improve optimization at finer scales, alternative assimilation techniques to batch inver-

sions are needed. Bruhwiler et al. [2005] introduced a fixed-lag Kalman smoother, used

extensively in Numerical Weather Prediction, which steps through observations sequen-

tially in time to optimize a subset of observations and update forecast error covariance.

This method assumes that information contained in measurements smoothes out over time

due to atmospheric mixing of spatial gradients such that fewer observations (6-9 months

worth) need be used compared to large Bayesian systems (1 year or longer). Although

the Kalman smoother is not ideally suited for continuous observations, it was extremely

innovative for inverse studies of CO2.

Peters et al [2005] expanded on the fixed lag Kalman smoother by introducing an

ensemble based approach in which the covariance matrix was approximated by ensemble

members. An advantage of ensemble approaches is that they incorporate uncertainty in es-

timates of flux distributions that arise from errors in the observations and transport model.

These approaches attempt to estimate the probability distribution functions (PDFs) of the

analysis and forecasts using a relatively small ensemble of random realizations from the

distributions, and use the ensemble estimate of a short term forecast PDF when assimilat-
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ing observations. Ensemble Kalman filters such as that proposed by Peters et al. [2005]

use ensemble estimates of error covariance such that surface flux estimates are those that

best fit the assimilated observations. The so called “fixed-lag ensemble Kalman smoother”

replaces bottom-up flux estimates with background fluxes that result from the assimilation

process and therefore contain information from previous analysis cycles. While this tech-

nique can ingest large amounts of observations without the need to precalculate observation

operators, it is still too computationally expensive for large observation vectors that occur

in the satellite era. Another ensemble-based data assimilation approach involves the Maxi-

mum Likelihood Ensemble Filter, or MLEF [Zupanski, 2005; Zupanski and Zupanski, 2006;

Zupanski et al., 2006; Zupanski et al., 2007; Lokupitiya et al., 2008], which is designed to

be able to handle large observational datasets.

Baker et al. [2006] and Chevallier et al [2005] introduced variational data assimilation

schemes as an alternative to pure matrix-based schemes in order to cope with the large

amount of satellite data. Four-dimensional variational data assimilation uses an adjoint

version of the transport model to estimate that atmospheric state that best fits assimilated

observations. Calculation of the model adjoint can be a bit disconcerting, especially if

frequent improvements are introduced to models and maintenance of the adjoint is necessary.

Because the ”atmospheric memory” can be quite long, variational approaches are desirable

in that it is possible to optimize fluxes using a year or more’s worth of observations that

contain information at multiple mixing time scales.

1.2 Objectives of this Study

A major science objective of most carbon cycle studies is quantification of carbon

sources and sinks at the finest possible resolution with the highest possible accuracy. CO2

inversion studies attempt to map and quantify source and sink distributions using atmo-

spheric transport models to communicate observed signals to the surface through increas-

ingly sophisticated optimization techniques. The literature review has examined each of
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the three major components of this top-down approach, and revealed several well known

weaknesses. While the other components are important, the transport model is the primary

tool by which the inversion determines at what geographic location a given parcel of air

containing some mixing ratio of CO2 originates. Given that the distribution of CO2 mixing

ratios is ultimately determined by winds between the surface flux and the observation, it is

crucial to get the winds correct. Inability of atmospheric models to properly represent im-

portant dynamical processes associated with weather systems is a leading cause of incorrect

winds and hence uncertain source and sink maps. This study is motivated by (1) getting

the winds correct and (2) quantifying the effect of incorrect winds on inverse estimates of

CO2 flux from satellite data.

To account for all winds in the atmosphere would be well beyond the scope of any

single study. This research therefore focuses on a certain set of winds that have received

relatively little attention in the carbon science literature: winds from extratropical cyclones.

Extratropical cyclones involve processes such as frontal ascent, cumulus convection, and

turbulence mixing in the PBL that can transport tracer rapidly and over long distances

but occur at scales that are unresolved and therefore poorly represented in todays weather

prediction, climate, and inversion models. Extratropical cyclones are a crucial component

of the moist circulation and are responsible for the bulk of weather in mid-latitudes. They

are also responsible for a great deal of variance in CO2 at continental observing stations in

northern middle latitudes. Such highly variable CO2 distributions are actually signals that

contain important upstream surface flux information at synoptic and seasonal scales, so it is

important to represent them well. Unfortunately, these weather systems and resulting CO2

variations are difficult to represent numerically, and as it turns out are difficult to observe.

To complicate matters further, extratropical cyclones represent only a single component of

a system of processes including baroclinic waves, extratropical cyclones, and frontal weather

systems. This system of processes will by referred to from this point on as synoptic processes.

Seasonal covariance between synoptic processes and terrestrial ecosystem metabolism, and



22

resulting meridional CO2 transport within the mid-latitude storm track, has received very

little attention in the literature. This research seeks a comprehensive description of CO2

transport by synoptic processes and an understanding of possible implications of synoptic

transport (and underlying uncertainties) for surface flux estimates and carbon science. This

study consists of three parts:

(1) Part 1 seeks a dynamical framework for explaining synoptic transport processes for

CO2. In particular, Part 1 explores how the moist component of the mid-latitude

atmospheric circulation acts as a vehicle for transport of CO2 between middle and

polar latitudes. This part of the study is motivated by recent findings [Pauluis et

al., 2008] that mass transport along moist isentropic surfaces on baroclinic waves

represents an important component of the atmospheric heat engine that operates

between the equator and poles, and that moist transport accounts for as much as

half the air in polar regions. Additionally, moist synoptic transport along the mid-

latitude storm track is correlated with ecosystem metabolism because large-scale

baroclinicity and photosynthesis are both driven seasonally be variations in solar

radiation. This seasonal covariance between meridional heat transport and surface

fluxes of CO2 should therefore have interesting implications for the seasonal cycle

of CO2 in northern latitudes. Results from Part 1 are discussed in Chapter 3.

(2) Part 2 seeks to quantify uncertainty associated with transport by synoptic waves.

As discussed in Section 1.1.2, there are many inherent uncertainties associated with

synoptic transport, including moist processes within warm conveyors, frontal cir-

culations, and fine-scale vertical transport my moist convection and PBL turbu-

lence. These uncertainties are linked in part to grid spacing and parameteriza-

tion of sub-grid scale vertical mixing. These uncertainties are investigated using

a self-consistent modeling framework driven by reanalysis products that are simi-

lar numerically, but have important differences in grid spacing and vertical mixing

schemes. Many carbon cycle studies conclude that it is important to improve the
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representation of important transport processes within tracer transport models.

Part 2 of this study seeks to identify and explain key differences in modeled synop-

tic transport. Results from Part 2 are discussed in Chapter 4.

(3) Part 3 seeks to quantify errors in estimates of surface fluxes of CO2 that result

from transport biases. Synoptic transport of CO2 occurs on scales that are poorly

represented in global models, so it may be a source of inversion errors. Observing

System Simulation Experiments (OSSEs) are designed to quantitatively asses the

value of atmospheric observing systems to numerical forecasting. They have been

applied by the CO2 inversion community in a similar manner to assess assimilation

techniques and the potential of atmospheric CO2 observations to provide constraint

for surface flux estimation. Part 3 uses an OSSE framework to test (1) the ability of

an ensemble technique for flux estimation to retrieve realistic looking sinks hidden

within satellite data and (2) whether sink estimates are substantially degraded in

the present of imperfect transport. Results from Part 3 are discussed in Chapter 5.

Each results chapter also includes an introduction, motivation, and conclusions sec-

tion. Conclusions from all parts of this research are tied together in Chapter 6. Trans-

port simulations are performed with the Parameterized Chemistry and Transport Model

(PCTM). Chapter 2 includes description of PCTM (Chapter 2.1), along with prescribed

ocean and terrestrial surfaces fluxes (Chapter 2.2), various meteorological driver data sets

(Chapter 2.3), and forward simulation experiments (Chapter 2.4). Parts 1 and 2 of this

study require special analysis techniques to characterize moist synoptic transport at global

scales, which are described in Chapter 2.5. The inversion methodology used for Part 3 is

described in Chapter 2.6.



Chapter 2

EXPERIMENTAL METHODS

2.1 Model Description

2.1.1 PCTM

The chemistry transport model used for CO2 forward simulations, PCTM, has been

adapted from a full-chemistry and transport model [e.g., Douglass and Kawa, 1999], tech-

nical aspects of which are discussed in Nielson [2000]. Three-dimensional tracer advection

in PCTM is based on the transport code of Lin and Rood [1996], which uses a flux form

semi-Lagrangian formulation (FFSL). Several modifications were made to PCTM for mass

conservation [Kawa et al., 2004]. Transport in PCTM can be driven by simulated or ana-

lyzed weather fields.

All transport is calculated on the hybrid sigma-pressure (σ − p) terrain following

vertical coordinate, which can be defined according to Simmons and Burridge [1981] by

η = p
ps

+
(
p
ps
− 1
)(

p
ps
− p

po

)
, where p is pressure, ps is surface pressure, and po is the

reference pressure equal to 1000.0 mb. This equation forces η to be monotonic with height,

where η = 1 when p = ps and η → 0 as p → 0, and is designed such that η is terrain

following near the surface and tends uniformly to pressure at upper levels. Simmons and

Strüfing [1983] approximate η by specifying the pressure of each model level as a function

of surface pressure and vertically dependent coefficients a and b. The η coordinate can be

generalized such that pressure is given by

p (i, j, k, t) = a (k) + b (k) ps (i, j, t) (2.1)
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where for a given time t, p is the pressure at the coordinates i, j, k and a(k) and b(k) are

components of the hybrid coordinate at the layer edge k. ps(i, j, k) is the surface pressure

at the horizontal grid point (i, j) and time t. a(k) and b(k) at the layer edges are stored

as global metadata values in each η product file. This study uses transport fields saved on

η from four versions of the NASA Goddard Earth Observation System (GEOS, discussed

below). Surface CO2 boundary conditions include terrestrial, oceanic, and anthropogenic

fluxes, also discussed below.

PCTM solves the constituent continuity equation

∂χ

∂t
= −Ṽ · ∇χ+ L (χ) + P (χ) (2.2)

where χ is the constituent mixing ratio concentration, t is time, Ṽ is the total velocity vector,

and P and L are the production and loss rates, respectively using a technique known as

process splitting [Nielson, 2000]. The Lin and Rood scheme offers several major advantages

of FFSL necessary to maintain the statistics of advected tracers. One includes independence

of stability on time step [Lin and Rood, 1996]. In addition, the scheme meets the physical

constraints of tracer advection and accounts for the problem of consistency between the

tracer continuity equation and the underlying equation of continuity of air due to process

splitting techniques [Lin and Rood, 1996]. The accuracy of the code for large-scale transport

is well documented [Kawa et al., 2004].

PCTM simulations that use analyzed meteorology face the problem of local non-

conservation of mass that arises during the assimilation process, which leads to incon-

sistencies between surface pressure tendencies and mass flux convergence. This, in turn,

introduces errors in the advected tracer field. Kawa et al. [2004] add a pressure fixer [Rot-

man et al., 2001] to the model, which acts to remove zonally distributed pressure errors

without inducing a vertical wind change, and find that inconsistencies are removed.

Subgrid-scale vertical mixing processes such as cumulus convection and PBL turbu-

lence are also important for atmospheric tracer transport. Convective mixing is implemented

in PCTM using a mass conserving, semi-implicit convective transport module [Kawa et al.,
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2004], formulated to be consistent with convective mass fluxes provided by the Zhang and

McFarlane [1995] deep convection scheme used in the finite volume GCM (FVGCM). Mixing

by PBL turbulence is implemented using diffusion between adjacent layers.

2.2 Surface Boundary Conditions

This section briefly discusses surface flux data, which act as sources and sinks of CO2

to the atmosphere. Surface fluxes used in this study include terrestrial biological fluxes,

anthropogenic sources, and oceanic fluxes. Fluxes due to land use change and fire emissions

are not included.

2.2.1 Terrestrial Fluxes

The Simple Biosphere model (SiB) was developed by Sellers et al. [1986] to calculate

surface energy budgets in climate models and after substantial modification [Sellers et al.,

1996 a,b] became SiB2. Vegetation parameters are derived directly from processed satellite

data. The parameterization of stomatal and canopy conductance used in the calculation of

the surface terrestrial energy budget involves the direct calculation of carbon assimilation

by photosynthesis [Farquhar et al., 1980], making possible the calculation of CO2 exchange

between the land and atmosphere [Denning et al., 1996, 2003]. Photosynthetic carbon

assimilation is linked to stomatal conductance and thence to the surface energy budget and

atmospheric climate by the Ball-Berry equation [Collatz et al., 1991, 1992]. SiB models

include a prognostic canopy airspace of temperature, moisture, and CO2. Time invariant

biophysical parameters include canopy height, leaf angle distribution, leaf transmittance,

photosynthetic parameters, and soil properties. Time and spatially varying biophysical

parameters are calculated from satellite observations (see below) and include leaf area index

(LAI) and fraction of absorbed photosynthetic active radiation (fPAR).

Additional modifications have occurred since SiB2. For example, the ability to ac-

cumulate up to five layers of snow, each with unique thermodynamic properties, has been
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added, improving the treatment of soil insulation and thermal properties in the winter. A

more realistic root profile is used, with 10 soil layers and an initial soil column depth of

3.5 meters, along with better treatment of soil water stress and frozen soil. Respiration

includes an autotrophic component, accounting for maintenance and growth. The revised

model is referred to as SiB3 [Baker et al., 2008].

Soil respiration is modeled as a function of temperature and moisture of each layer of

soil, and is scaled with annual gross primary production (GPP) to achieve carbon balance

over an annual cycle [Denning et al., 1996a]. Running SiB3 in this steady state mode, such

that ecosystem respiration balance GPP over one year at every grid point, is necessary

because processes governing long term sources and sinks of CO2 such as forest regrowth

and soil carbon pools are not simulated in SiB3. Processes that govern biospheric exchange

over diurnal, synoptic, and seasonal time scales, which are controlled primarily by climate

and weather, are modeled very well by SiB3. For example, SiB3 has been evaluated against

eddy covariance measurements at a number of sites [Baker et al., 2003; Hanan et al., 2005;

Vidale and Stockli, 2005].

Net ecosystem exchange (NEE, representing the net terrestrial biogenic flux of CO2

and calculated as Respiration - GPP) estimates from SiB3 are provided at hourly resolution.

In this experiment, initial conditions for soil moisture and temperature are specified using

an 18-year global spinup of SiB3 (January 1, 1982 to December 31, 1999) driven by the

National Center for Environmental Prediction Department of Energy reanalysis (NCEP2)

1◦ x 1◦ (longitude x latitude) global dataset [Kanamitsu et al., 2002]. A different reanalysis

product is used to drive SiB3 for the PCTM simulation period (discussed below).

Land Surface Parameters

Vegetation greenness is prescribed using LAI and fPAR estimates from the MOD-

erate Resolution Imaging Spectroradiometer (MODIS) on board the NASA EOS satellite

TERRA. LAI and fPAR products (MOD15A2) are produced as 8-day composites at 1-km
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resolution; this study uses a version regridded to 0.25◦ x 0.25◦ and corrected for cloud and

aerosol contamination produced jointly by Boston University and the University of Montana

(Myneni et al. [2003]; data courtesy http://cybele.bu.edu). The use of satellite derived LAI

and fPAR parameters is necessary for calculation of surface photosynthesis, evapotranspi-

ration, and annual net primary production, and provides adequate resolution in time and

space for studies of terrestrial carbon processes at synoptic and seasonal scales.

The soil map for SiB3 is provided by the International Geosphere-Biosphere Pro-

gramme (IGBP) at a resolution of 10 km and then modified to correspond to SiB3 classes.

The biome map is a satellite data product of the University of Maryland with a resolution

of 1 km, converted to 1◦ by 1◦ resolution (see Figure 2.1). Biome types are also converted

to SiB3 classes.

SiB3 combines information about MODIS, biome, and soil type to determine surface

characteristics, which are used in CO2 flux calculations.

2.2.2 Fossil Fuel Fluxes

Fossil fuel fluxes are prescribed from anthropogenic CO2 emission (kg C m−2 s−1)

estimates based on calculations done by Andres et al. [1996] at 1◦ by 1◦ resolution for the

entire globe using fossil fuel consumption, cement manufacture, and population density data

from 1998. Fossil fuel fluxes represent a source of CO2 from the land to the atmosphere.

Although fossil fuel fluxes are spatially variable, they are constant in time, and therefore

do not accurately portray diurnally, weekly, and seasonally variability [Gurney et al., 2005]

or the correct atmospheric growth rates. A realistic fossil map with the correct temporal

and spatial variability is not needed for this study.

2.2.3 Oceanic Fluxes

The ocean source is from the Community Climate System Model (CCSM-3) coupled

ocean Biogeochemical Elemental Cycling model (BEC). This is a process based physical-
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Figure 2.1: SiB3 Biome Map for GiMMSg NDVI. Vegetation Type by Number on Color
Bar: 1) C3 Tall Broadleaf-Evergreen Trees, 2) C3 Tall Broadleaf-Deciduous Trees, 3) C3
Tall Broadleaf and Needleleaf Trees, 4) C3 Tall Needleleaf Trees, 5) C3 Tall Needleleaf-
Deciduous Trees, 6) C4 Short Vegetation, Same as Types 6, 7, 8, 11 7) C4 Short Vegetation
(Maize Optical Properties), 8) Same as 7, 9) Short Broadleaf Shrubs with Bare Soil, 10)
C3 Short Ground Cover (Tundra), 11) C4 No Vegetation (Low Lat Desert), 12) Agriculture
(Wheat) and C3 Grasslands, 13) Ice

biogeochemical-ecological model driven by reanalysis, capable of producing interannual vari-

ability in air-sea CO2 flux. The BEC model consists of upper ocean ecological [Moore et al.,

2004] and full-depth biogeochemical [Doney et al., 2006] modules imbedded in a global 3-D

Parallel Ocean Program (POP) ocean general circulation model [Smith and Gent, 2004;

Collins et al., 2006]. The model is forced with atmospheric reanalysis from the CORE

Inter-Annual Forcing (CIAF) version 2 dataset [Large and Yeager, 2004] and time-varying

dust deposition [Mahowald et al., 2003] and saved at daily resolution. These models are

described and analyzed in more detail in Doney et al [2009a; 2009b].
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2.3 Transport Driver Data

Transport in PCTM is driven in offline mode; that is, transport fields are produced

from a parent GCM, which are then saved for later transport in a chemistry transport model

(CTM) such as PCTM. Parent GCMs used in this study are developed, tested, and run

at NASA Goddard Global Modeling and Assimilation Office (GMAO). Weather fields in

these GCMs are analyzed (or re-analyzed) through assimilation of data from conventional

(radiosondes, wind profiles, radar, etc.) and satellite streams. Transport is driven by

resolved processes, including horizontal winds and vertical divergence, which are used for

advective processes, and unresolved processes solved through parameterization, including

cumulus convection and PBL turbulence, which are used for vertical mixing. Transport

in this study is determined from analyzed and re-analyzed meteorological fields from the

GEOS Data Assimilation System (DAS). Goddard datasets are produced from two primary

parent atmospheric general circulation models (AGCMs), GEOS version 4 (GEOS4) and

GEOS version 5 (GEOS5), at three different spatial resolutions and two different vertical

resolutions. Each parent AGCM has a unique set of vertical mixing schemes to generate

moist convective mass fluxes and vertical mixing. The key differences between these models

are specified below.

2.3.1 GEOS4-1.25x1

The first product is based on version 4 of GEOS-DAS (GEOS4-DAS). Kawa et al.

[2004], Douglass et al. [2003], and Bloom et al. [2005] discuss this data in detail. Like

PCTM, GEOS4-DAS uses finite volume dynamics based on the Lin-Rood dynamical core

[Lin and Rood, 1996]. Observations used in the finite volume data assimilation system (FV-

DAS) include both meteorological products and satellite data. Physical parameterizations

are determined using the National Center for Atmospheric Research Community Climate

Model, Version 3 (CCM3) package [Kiehl et al., 1998], which include deep convection [Zhang

and McFarlane, 1995], shallow convection [Hack, 1994], and PBL turbulence [Holtslag and
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Boville, 1993]. GEOS4-DAS transport fields are saved at 6-hourly resolution and 1.25◦ by

1◦ (representing the native resolution of GEOS4-DAS) grid spacing with 55 hybrid vertical

levels up to 1 mb. This re-analysis driver data will be referred to as GEOS4-1.25x1.

Of the 55 vertical levels, only 14 are located within the troposphere. Since the mixing

time scale between the troposphere and stratosphere is approximately 10 years, and this

study is focused on processes in the troposphere at time scales much less than 10 years, the

55 vertical levels in GEOS4-1.25x1 are condensed to 25 levels while retaining all levels in

the troposphere. 1.25◦ by 1◦ transport in PCTM is run with a 7.5 minute time step.

2.3.2 GEOS4-2.5x2

GEOS4-1.25x1 is regridded horizontally to 2.5◦ by 2◦ to study transport at coarser

horizontal resolution. Vertical mixing by moist convection and turbulent diffusion is identi-

cal to GEOS4-1.25x1. Wind vectors are also conserved, but regridding to coarser resolution

has smoothed spatial gradients. All 25 vertical levels are retained, and transport fields are

still saved at 6-hourly resolution. Time-stepping through PCTM is doubled to 15 minutes to

be consistent with CFL and doubling of horizontal grid spacing. This regridded re-analysis

driver data will be referred to as GEOS4-2.5x2.

2.3.3 GEOS5-0.67x0.5

The third product is based on version 5 of GEOS-DAS [GEOS5-DAS, Rienecker et

al., 2008]. GEOS5-DAS maintains the finite-volume dynamics used from GEOS4-DAS [Lin,

2004] and is integrated with physics packages under the Earth System Modeling framework

(e.g., Collins et al., 2005), including the Relaxed Arakawa-Schubert (RAS) scheme for con-

vection [Moorthi and Suarez, 1992] and separate PBL turbulent mixing schemes for stable

[Louis et al., 1982] and unstable [Lock et al., 2000] conditions. DAS integrates GEOS5-DAS

with three-dimensional variational analysis (3DVar) referred to as Gridpoint Statistical In-

terpolation (GSI) analysis, with a focus on wind fields for studies of tropospheric transport.
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This GEOS5-DAS product is technically based on version 5.1.0 of GEOS5-DAS, which

was used for tuning and development issues for the Modern Era Retrospective-analysis

for Research Applications (MERRA, e.g., Bosilovich et al. [2006]). The native grid of

GEOS5-DAS (and the grid at which the analysis is performed) is 0.67◦ by 0.5◦ horizontal

resolution with 72 layers to 0.01 hPa, 31 of which are in the troposphere and the rest

above the tropopause. The 72 vertical layers are condensed to 42 levels while retaining

the 31 tropospheric levels. Transport fields are save at 6-hourly resolution. In order to

maintain CFL criteria, 0.67◦ by 0.5◦ transport is run with a 3.75 minute time step in

PCTM. Transport fields are as instantaneous analysis (in contrast to the re-analysis version

of GEOS5-DAS discussed below). Since the analysis is based on GEOS5-DAS, this driver

data will be referred to as GEOS5-0.67x0.5.

2.3.4 GEOS5-1.25x1

The fourth (and final) product is similar to GEOS5-0.67x0.5 except is a newer version

(5.2.0) of GEOS5-DAS used for MERRA which addresses a deficiency in the diurnal cycle in

the high latitudes. Except for changes to address high latitude diurnal cycles, GEOS5-DAS

version 5.2.0 is nearly the same as GEOS5-0.67x0.5. Transport fields are re-analyzed (saved

during a corrector segment of the Incremental Analysis Update rather than the analysis

segment) and saved at 3-hourly resolution at a reduced horizontal resolution of 1.25◦ by 1◦

to facilitate comparison with GEOS4-1.25x1. This re-analyzed driver data will be referred

to as GEOS5-1.25x1.

2.4 Transport Simulations for Parts 1 and 2

Transport simulations are run from January 1, 2000 through December 31, 2004 to

properly spin up atmospheric gradients of CO2. Transport in the spin up run is driven by

GEOS4-1.25x1. All terrestrial, oceanic, and anthropogenic surface fluxes of carbon are used

in the spin up. Flux and energy calculations in SiB are also driven by GEOS4-1.25x1 me-
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teorology from 2000-2004 such that transport and surface fluxes of CO2 are synchronized.

GEOS4-1.25x1 precipitation is scaled by monthly precipitation from the Global Precip-

itation Climatology Project (GPCP, see Huffman et al. [2001]) to force total monthly

precipitation in GEOS4-1.25x1 to match that of GPCP. The time at which precipitation

occurs remains unchanged so that covariance of anomalies in cloudiness, moisture, and ver-

tical transport is conserved. Anthropogenic and oceanic surface flux maps are regridded to

1.25◦ by 1◦ using the conservative remapping scheme of the SCRIP software package [Jones,

1999]. CO2, which is given as a mole fraction in units of parts per million (ppm), is treated

as a passive tracer such that chemical reactions and feedbacks between CO2 and weather

are non-existent.

Three-dimensional CO2 fields from PCTM are saved at 0z on January 1, 2005 and

regridded to the appropriate horizontal and vertical resolution depending on the driver data.

PCTM is run from January 1, 2005 through December 31, 2005 to comprise the analysis

period. Part 1 of this study includes one forward simulation in which PCTM is driven

by GEOS4-1.25x1. Part 2 of this study consists of four forward simulations, one for each

of the meteorological driver data sets. All driver data is run through the same version of

PCTM. All transport simulations are prescribed with the same set of surface fluxes. SiB3

is run at 1.25◦ by 1◦ driven by two-dimensional surface meteorology from GEOS4-1.25x1.

Ocean, fossil fuel, and terrestrial fluxes are regridded to the resolution of the meteorological

driver data. For Part 2, this experimental design is important because all simulations use

a common transport model and set of surface fluxes such that the only difference between

experiments is atmospheric transport. Any differences in CO2 transport in Part 2 can

therefore be attributed to differences in meteorological driver data.

With regard to Part 2, it is important to note that, while the dynamical core is

consistent between GEOS models and with the dynamical core of PCTM, there are many

other factors that may cause transport differences. Inconsistencies between horizontal and

vertical grid spacing, data assimilation technique, mass balance errors associated with data
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assimilation, number and type of observations used in data assimilation, physical parame-

terization schemes for vertical mixing are probably the most dominant factors. That being

said, GEOS4-2.5x2 and GEOS4-1.25x1 are different horizontal grid spacing. The same can

be said for GEOS5-1.25x1 and GEOS5-0.67x0.5, also some minor differences in the PBL

scheme in the Arctic and the number and type of data assimilated may also be impor-

tant (more discussion in Chapter 4). The biggest model differences in synoptic transport

of CO2 will most likely arise between GEOS4-DAS and GEOS5-DAS as a result of some

combination of all of the factors listed above.

2.5 Methodology for Transport Analysis

PCTM solves the constituent continuity equation on η, but tracer transport can be

diagnosed from the model output on any vertical coordinate (height, pressure, isentropes,

etc). It is important to note that regridding between vertical coordinates will not change

CO2 distributions throughout the atmosphere, nor total meridional transport around a

latitude circle. It will, however, change our interpretation of important physical processes

in the atmosphere that are important for CO2 variations and meridional transport. Because

the underlying mechanisms governing CO2 transport are open to interpretation, analysis

of meridional transport in Part 1 will be performed on three vertical coordinate systems

(discussed below) represent Eularian and Lagrangians frames of reference. This section

begins by expressing tracer transport as a function of a generalized vertical coordinate.

The eddy decomposition technique for analyzing large scale tracer transport by symmetric

and asymmetric components of the circulation is then described. Transport equations are

then extended to three vertical coordinates.
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2.5.1 Tendency Equation for Atmospheric CO2

The equation expressing conservation of an arbitrary intensive scalar, ψ, on an arbi-

trary vertical coordinate, ζ, can be written as

∂

∂t
mζψζ +

1

a cosϕ

∂

∂λ
mζuζψζ +

1

a cosϕ

∂

∂ϕ
mζvζψζ cosϕ

+
∂

∂ζ
mζ ζ̇ψζ =

∂

∂ζ
Sψ, (2.3)

where mζ = −1
g
∂p
∂ζ is the pseudo-density (equivalent to the amount of mass (as measured

by the pressure difference) between two ζ surfaces), p is pressure, g is gravity, a is the

radius of Earth, ϕ is longitude, λ is latitude, u is the zonal wind, v is the meridional wind,

and Sψ is the vertical flux of ψ. ζ̇ ≡ Dζ
Dt is defined as the rate of change of ζ following a

particle. The horizontal advection terms, 1
a cosϕ

∂
∂λmζuζψζ + 1

a cosϕ
∂
∂ϕmζvζψζ cosϕ, can be

rewritten as ∇ζ ·mζVζψζ , where Vζ is the horizontal wind vector pointing along a surface

of ζ. Equation 2.3 then reduces to

∂

∂t
mζψζ +∇ζ ·mζVζψζ +

∂

∂ζ
mζ ζ̇ψζ =

∂

∂ζ
Sψ. (2.4)

To solve for conservation of ψ through an atmospheric column, Equation 2.4 is inte-

grated vertically from the surface to the top of the atmosphere. This gives

∂

∂t

∫ ζT

ζS

mζψζdζ +∇ζ ·
∫ ζT

ζS

mζVζψζdζ

+ (mψ)ζS

(
∂ζS
∂t

+ VζS · ∇ζS − ζ̇S
)

− (mψ)ζT

(
∂ζT
∂t

+ VζT · ∇ζT − ζ̇T
)

= SψS
− SψT

, (2.5)

where T refers to the top of the model atmosphere, S refers to the bottom of the atmosphere

(or surface), ζT is the value of ζ at the top of the model atmosphere, and ζS is the value of

ζ at the bottom of the model atmosphere. The lower boundary condition, i.e., that no mass

crosses the Earth’s surface, is expressed by requiring that a particle that is on the Earth’s
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surface remains there:

∂ζS
∂t

+ VS · ∇ζS − ζ̇S = 0. (2.6)

Similarly, ∂ζT
∂t + VT · ∇ζT − ζ̇T represents the mass flux across the top of the atmosphere,

which we assume to be zero, i.e.,

∂ζT
∂t

+ VT · ∇ζT − ζ̇T = 0. (2.7)

Assuming also that there are no sources or sinks of ψ at the top of the atmosphere, and

substituting Equations 2.6 and 2.7 into Equation 2.5, Equation 2.5 reduces to:

∂

∂t

∫ ζT

ζS

mζψζdζ +∇ζ ·
∫ ζT

ζS

mζVζψζdζ = SψS
(2.8)

or, expanding the second term on the right hand side (RHS) of Equation 2.8,

∂

∂t

∫ ζT

ζS

mζψζdζ +
1

a cosϕ

∂

∂λ

∫ ζT

ζS

mζuζψζdζ

+
1

a cosϕ

∂

∂ϕ

∫ ζT

ζS

mζvζψζ cosϕdζ = SψS
. (2.9)

Vertical integration through the atmospheric column and application of surface and

upper boundary conditions has provided an equation for the column integrated time rate

of change of constituent (ψ) per unit mass (first term on the left hand side (LHS) of

Equation 2.9) as a function of column integrated zonal advection (second term on LHS),

meridional advection (third term on LHS), and sources and sinks of ψ at the Earth’s surface

(RHS of Equation 2.9). The zonal term is eliminated from Equation 2.9 by averaging around

a latitude circle using the zonal mean operator [( )]. Averaging in time using the time mean

operator ( ) reduces Equation 2.9 to

∂

∂t

[∫ ζT

ζS

mζψζdζ

]
+

1

a cosϕ

∂

∂ϕ

[∫ ζT

ζS

mζvζψζ cosϕdζ

]
= [SψS

]. (2.10)

Finally, assuming ζT and ζS do not vary in time or space, the mean operators, ( )

and [( )], may be moved inside the vertical integrals. Equation 2.10 is then rewritten as

∂

∂t

∫ ζT

ζS

[mζψζ ]dζ +
1

a cosϕ

∂

∂ϕ

∫ ζT

ζS

[mζvζψζ ] cosϕdζ = [SψS
]. (2.11)
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Equation 2.11 reduces to the continuity equation for total mass (air) by setting ψ to unity

and the source term on the RHS to zero; for total mass, the net meridional transport

averages to zero over sufficiently long time periods. This represents total mass balance for

a “ring” of air along a latitude circle.

By setting ψ to CO2 mixing ratio (C ), the zonal and time averaged vertically inte-

grated tendency equation for atmospheric CO2 is expressed as

∂

∂t

∫ ζS

ζT

[
mζCζ

]
dζ +

1

a cosϕ

∂

∂ϕ

∫ ζS

ζT

[
mζvζCζ

]
cosϕdζ =

[
(Fc)S

]
, (2.12)

where (Fc)S is the surface flux of CO2, which has units of kgC m−2 s−1.

2.5.2 Eddy Decomposition

The integrand of the second term on the LHS of Equation 2.12,
[
mζvζCζ

]
, represents

net meridional transport of CO2 by the atmosphere in the time and zonal mean at an arbi-

trary atmospheric layer. To assess influences of the mean circulation and baroclinic waves

on meridional transport and polar seasonality, eddy decomposition is applied according to

methods outlined by Peixoto and Oort [1992], in which quantities (lets call these x, rep-

resenting mass flux (mv)ζ and tracer mixing ratio Cζ) are “perturbed” at an arbitrary ζ

surface and rewritten as x = x+x′ , representing the time mean and its temporal deviation

( )′ or “transient component”, and x = [x] +x∗ , representing the zonal mean and its zonal

deviation ( )∗ or “eddy component”.

With these definitions, we consider various statistics derived from the three-dimensional

fields of (mv)ζ and Cζ . To begin eddy decomposition, we first set a = (mv)ζ and b = Cζ

and perturb quantities in time. ab is then decomposed into its time mean and transient
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components and rewritten as

ab = (a+ a′)
(
b+ b′

)
= ab+ ab′ + a′b+ a′b′

= ab+ ab̄′ + ā′b+ a′b′

= ab+ a′b′. (2.13)

The RHS of Equation 2.13 simplifies from four terms (third line) to two terms (fourth line)

because the time average of a prime, namely a′ and b′, is approximately zero over sufficiently

long time intervals. Next, zonal averaging is applied to Equation 2.13 and both terms on the

RHS are decomposed into its zonal mean and eddy components. The first term is rewritten

as

[
ab
]

=
[
([a] + a∗) ([b] + b∗)

]
=
[ ¯[a] ¯[b] + ¯[a]b̄∗ + ā∗ ¯[b] + ā∗b̄∗

]
= ¯[a] ¯[b] + ¯[a]

[
b̄∗
]

+ [ā∗] ¯[b] +
[
ā∗b̄∗

]
= ¯[a] ¯[b] +

[
ā∗b̄∗

]
, (2.14)

where the RHS of Equation 2.14 simplifies from four terms (third line) to two terms (fourth

line) because the zonal average of an eddy, namely [ā∗] and
[
b̄∗
]
, is by definition zero around

a latitude circle. Similarly, the second term in the RHS of Equation 2.13 is rewritten as

[
a′b′
]

=
[
([a′] + a′∗) ([b′] + b′∗)

]
=
[
[a′] [b′] + [a′] b′∗ + a′∗ [b′] + a′∗b′∗

]
= [a′] [b′] + [a′] [b′∗] + [a′∗] [b′] + [a′∗b′∗]

= [a′] [b′] + [a′∗b′∗] (2.15)

where the RHS of Equation 2.14 simplifies from four terms (third line) to two terms (fourth

line) because the zonal average of the eddy of a prime, namely
[
ā′∗
]

and
[
b̄′∗
]
, is by definition

zero around a latitude circle.
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Combining Equations 2.14 and 2.15 and substitution of (mv)ζ and Cζ for a and b

yields

[mζvζCζ ] =
[
(mv)ζ

] [
Cζ
]

+
[
(mv)ζ

∗
Cζ
∗
]

+
[
(mv)′ζ

] [
C ′ζ

]
+
[
(mv)′∗ζ C

′∗
ζ

]
. (2.16)

Eddy decomposition is an extension of Reynolds averaging and applies to the large-scale,

geostrophically and hydrostatically balanced flow. Time averaging of one month is applied,

and assumed to be a sufficiently long period for time averaged prime quantities to disappear

on the third line of Equation 2.13. The focus of this study is synoptic transport by baroclinic

waves, which occurs on time scales of ∼3-7 days and spatial scales of ∼1000 kms. By

defining the time mean using a time window larger than the synoptic time scale, the net

effect of eddies over multiple synoptic cycles is captured. Through these zonal and temporal

averaging techniques, the statistics of CO2 transport is reduced to meridional and vertical

statistics.

The first term on the RHS of Equation 2.16 refers to the mean meridional circula-

tion (MMC), and accounts for transport of mean CO2 by the mean meridional mass flux.

The second term refers to stationary eddies, and represents transport by stationary waves

due to correlated zonal deviations of mass flux and CO2. These are forced primarily by

the geographic anchoring of planetary scale atmospheric waves by zonal inhomogeneities

in boundary conditions such as continents, oceans, ice sheets and mountains. The third

term accounts for temporal variations from zonal mean circulations, namely the transient

symmetric circulation, and contributes to temporal fluctuations in circulations such as the

Hadley Cell due to north-south seasonal migration. The fourth term accounts for tempo-

ral variations from the stationary planetary waves, that is transient eddies, representing

transport by time varying dynamical processes such as baroclinic waves due to correlated

temporal variations of mass flux and CO2. In mid-latitudes, baroclinic instability is a major

driver of transient eddies. The transient symmetric circulation is small in middle latitudes

relative to the other terms and will be absorbed into transient wave term for the remainder

of this study. Transport by transient and stationary waves together represents the eddy
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component of the large-scale mid-latitude circulation.

2.5.3 Vertical Coordinate

Eddy decomposition allows for analysis of global transport of atmospheric constituents

such as CO2 by large scale mean and eddy circulations. These transport processes are ana-

lyzed in different vertical coordinate frameworks to simplify our understanding of eddy and

mean transport of CO2. This study analyzes transport in both Eulerian and Lagrangian

coordinate systems.

Eulerian coordinate systems represent a reference system that is fixed with respect to

time and space. Pressure coordinates (p) are a standard way of analyzing three-dimensional

atmospheric fields. Pressure surfaces, however, intersect the ground at locations that change

with time. Because of the spatio-temporal dependence of pressure levels, the column integral

operation in Equation 2.10 cannot be moved outside of the averaging operators and eddy

decomposition cannot be applied for single atmospheric layers. Terrain following coordinates

such as η, on the other hand, work well for eddy decomposition because vertical layers are

fixed in time and space.

Lagrangian vertical coordinate systems follow the motion of an air parcel as it moves

vertically, and can be thought of as a reference system that is fixed with respect to the

motion of a parcel of air. An example of a Lagrangian coordinate system is potential

temperature, which is defined by θ = T
(
po
p

) R
Cp , with p the pressure, R the ideal gas

constant, Cp the specific heat, T the temperature, and p0 = 1000 mbar an arbitrary reference

pressure. Surfaces of constant θ are isentropic surfaces. θ is conserved following a particle

for reversible dry adiabatic transformations. This means that the vertical motion in θ-

coordinates is proportional to the heating rate, and that in the absence of diabatic heating

(radiation, evaporation, sensible heating), there is “no vertical motion,” from the point of

view of θ-coordinates. θ increases upwards in a statically stable atmosphere so that there

is a monotonic relationship between θ and height above ground level, z.
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Eddy decomposition on isentropic coordinates is relatively straightforward, but some

definitions must first be made to accommodate some complications. Namely, it is common

for isentropic surfaces to intersect the lower boundary in the presence of strong horizontal

temperature gradients, as occur for example along frontal zones. Too avoid surfaces running

through the ground, isentropic surfaces are assumed in this study to follow the surface

boundary. This effect is imposed by defining imaginary “massless layers,” such that the

pressure difference (or thickness) between two θ surfaces is zero. Since no mass resides

between the θ surfaces in the portion of the domain where they “touch the Earth’s surface,”

no mass conservation laws are violated when computing mass transport of tracer. This does,

however, present a problem for tracer transport along massless surfaces because tracers such

as C are undefined.

The following definitions are therefore made for quantities involving C so that mass-

less layers can be applied to zonal and temporal averaging techniques (i.e., Equation 2.16)

when isentropic coordinates intersect the surface:

Cζ(i, j, k) =
1

Tmass

Tmass∑
t=1

Cζ(i, j, k, t) for mζ(i, j, k, t) > 0 (2.17)

Cζ(i, j, k, t) = Cζ(i, j, k) for mζ(i, j, k, t) = 0 (2.18)

C ′ζ(i, j, k, t) = Cζ(i, j, k, t)−
1

Tmass

Tmass∑
t=1

C(i, j, k, t), (2.19)

where i, j, k, t are indices for longitude, latitude, height, time and Tmass is equal to the

total number of layers in the time averaging window (1 month) that have non-zero mass

(mζ > 0). These definitions guarantee that C ′ = 0 for massless layers.

As a proof of concept, these definitions are applied to Equation 2.13

(mv)C =
(
mv + (mv)′

) (
C + C ′

)
=
(
mv + (mv)′

)( 1

Tmass

Tmass∑
t=1

C +

(
C − 1

Tmass

Tmass∑
t=1

C

))
.
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Rearranging terms gives

=
(
mv + (mv)′

)( 1

Tmass

Tmass∑
t=1

C − 1

Tmass

Tmass∑
t=1

C + C

)
,

Finally, terms involving C cancel out, leaving

= (mv) (C).

This guarantees that the LHS and RHS of the first line in Equation 2.13 are equal for

massless layers as long as definitions 2.17-2.19 are applied consistently throughout eddy

decomposition.

Next I show how definitions 2.17-2.19 are applied to Equation 2.13 so that the first

line of Equation 2.13 simplifies to the last line of Equation 2.13. Substitution of mv for a

and C for b in Equation 2.13 gives

(mv)C =
(
mv + (mv)′

) (
C + C ′

)
= (mv)C + (mv)C ′ + (mv)′C + (mv)′C ′

= (mv)C + (mv)C̄ ′ + (mv)′C + (mv)′C ′. (2.20)

Averages of terms involving C are taken for layers with mass (C and C ′) using Equation

2.17 and 2.19, averages of terms involving mv are taken over all layers (mv and (mv)′), and

averages of terms involving both mv and C are taken over all layers ((mv)C and (mv)′C ′)

using Equation 2.18. Using these definitions, the time average of primes in Equation 2.20

are zero and Equation 2.20 reduces to

(mv)C = (mv)C + (mv)′C ′. (2.21)

Note also that, with these definitions, averages of terms involving C can be taken for all

layers with the same result. This is more algebraically correct, but either definition can be

used. In the results that follow, C is defined for layers with non-zero mass.

The LHS of Equation 2.21 is independent of our definition of C for massless layers

because by definition m is zero and thus C is always multiplied by zero. The balance
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of terms on the RHS is however strongly influenced. For example, by setting C to zero

for massless layers and using all layers in the calculation of [C] in the first term on the

RHS, [C] attains a physically unrealistic value for a particular θ surface in the presence of

massless layers due to including layers with C = 0 in the average, and is therefore biased

towards small values. This small bias also reduces mean meridional transport of CO2,

forcing the eddy term to compensate in order to keep balance. It is more desirable for

mean meridional transport of CO2 to involve transport of a physically meaningful value of

tracer that represents an average value for layers with mass. As long as C = C ′ + C and

C = C∗ + [C] is consistent throughout eddy decomposition, the LHS of Equation 2.13 is

always be equal to the RHS when massless layers are encountered in the statistics. The

definitions provided here, however, assure that partitioning of eddy and mean transport is

done in a physically realistic manner. Furthermore, since these definitions result in non-zero

mixing ratios for massless layers, no additional definitions are necessary for zonal quantities,

and Equations 2.14 and 2.15 can be solved using all layers.

When describing eddy and mean transport processes in an averaged sense, “dry isen-

tropes” (referred to here as surfaces of constant θ) and “moist isentropes” (defined as

θe ∼ θ+ Lv
cp
q, with Lv the latent heat of vaporization and q the water vapor concentration)

are more indicative of parcel trajectories through mid-latitude stormtracks than Eulerian

averages. Horizontal flow along isentropic surfaces contains (approximately) the adiabatic

component of vertical motion (assuming radiative cooling and sensible heating are relatively

unimportant for synoptic motions) that is often neglected in a Eulerian reference system.

In addition, θe is approximately conserved (internal energy neither lost nor gained) in the

presence of latent heating [Pauluis et al., 2008]. Mass transport on θe surfaces includes a

large contribution from moist air rising within stormtracks, while other forms of averaging

(Eulerian or dry isentropes) misses entirely this contribution (the corresponding transport

ends up in the mean term). The vertical component of motion gained from latent heat

release in condensing moist air is critical for describing tracer transport by moist ascent
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within baroclinic waves. In Chapter 3, eddy and mean transport is examined by setting ζ

to η, θ, and θe in Equation 2.16. In Chapter 4, transport is examined only with ζ set to θe.

2.6 Methodology for Inversion used in Part 3

End-to-end inversion experiments are carried out in Chapter 5 to determine whether

transport bias discussed in Chapter 4 is aliased into errors in surface flux estimation. The

inversion system uses the ensemble-based MLEF optimization technique, which was dis-

cussed briefly toward the end of Chapter 1.1.3. The following section includes discussion of

the inversion technique, followed by discussion of the strategy for sampling forward trans-

port simulations for synthetic satellite data, then a detailed description of the major steps in

the MLEF data assimilation cycle, and ending with details regarding covariance smoothing,

prior flux estimates, basic terminology, and net flux and uncertainty calculations. MLEF

discussion follows techniques and discussion provided by Lokupitiya et al. [2008].

2.6.1 Assimilation Scheme

The optimization problem is represented as solving for unknown persistent multi-

plicative biases in photosynthesis, respiration, and air-sea gas exchange. Net exchange of

carbon within a single grid point is represented as

F (x, y, t) = (1 + βRESP (x, y))RESP (x, y, t)− (1 + βGPP (x, y))GPP (x, y, t)

+(1 + βOCEAN (x, y))OCEAN(x, y, t) + FF (x, y, t), (2.22)

where x is latitude, y is longitude, and t is time. β’s represent persistent multiplicative

biases in time-varying grid-scale component land and ocean fluxes. Land fluxes are rep-

resented by heterotrophic respiration, or RESP(x,y,t), and gross primary production, or

GPP(x,y,t), which are derived from SiB3 at hourly resolution. Ocean fluxes are represented

by a net daily flux, or OCEAN(x,y,t), and are derived from Doney et al. [2009a; 2009b].

Fossil fuel flux, FF (x, y, t), is derived from the Vulcan Project [Gurney et al., 2009] and is

assumed to be perfect (i.e., biases aren’t included in the fossil fuel term).
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Unlike ocean flux, which is prescribed as a net flux, fluxes in SiB3 have components

into and out of the land (GPP and RESP , respectively). The strategy over land is therefore

not to solve for biases in net flux, but assume that biases exist in component fluxes. SiB3 is

balanced annually such that the sum of GPP at some grid point (x, y) from t = 1 to t = n,

where n is the total number of hours in a year, is equal to the sum of RESP from t = 1

to t = n. The real world has slowly varying terrestrial sinks that add up to something like

2.0-3.0 GtC yr−1 globally. To represent net annual sinks in this framework net uptake must

exceed net respiration; i.e., GPP must be larger than RESP in the annual mean. This is

accomplished with β′s. Let’s assume, for example, that SiB3 predicts respiration and GPP

fluxes of 120 GtC yr−1 for the entire globe. There are an infinite number of combinations

of βGPP and βRESP that could be used to obtain a 2.0 GtC yr−1 net terrestrial sink, as

long as βGPP > βRESP . βRESP = −0.02 and βGPP = 0.02 are two possible values. Put

into context, these values mean that modeled respiration is overestimated in SiB3 by about

2% and GPP is underestimated by about 2%. βGPP can also be less than zero, suggesting

SiB3 overestimates GPP, as long as βRESP is more negative.

The idea is that high frequency time variations in respiration and photosynthesis are

driven by relatively well-understood and easily modeled processes that are determined to

first order by variations in solar radiation [Zupanski et al., 2007a]. Mechanisms governing

the physiological response of plants to weather and quick turnover times in the soil carbon

pool are fairly well represented in SiB3 by process based equations, reanalyzed weather

fields, vegetation cover and soil texture maps, and satellite derived phenology. Processes

not represented in SiB3 such as underestimation of available nitrogen, forest management,

agricultural land-use may lead to persistent biases in photosynthesis, while poor prescription

of soil carbon pools or coarse woody debris may bias respiration calculations. This technique

allows for RESP and GPP to vary on hourly, synoptic, and seasonal timescales and for

air-sea exchange on daily time scales, but assumes that biases in these fluxes persist for

longer periods.
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Lokupitiya et al. [2008] solved for 8 week biases using synthetic data based on the

in-situ network. The 8 week window was chosen because it takes several weeks to months

for the atmosphere to mix sufficiently such that in-situ stations can feel CO2 pulses from

distant source regions. Here biases are allowed to to persist for 2 weeks because satellite

data provides approximately global coverage in just a few days (GOSAT has global coverage

in 3 days) such that surface flux signals are sufficiently constrained.

2.6.2 Synthetic Satellite Data

Synthetic satellite data refers to column averaged CO2 mixing ratios obtained from a

tracer transport model. This data is generated by sampling pressure weighted CO2 output

from GEOS5-0.67x0.5 along the GOSAT orbit using an orbit simulator provided by David

Baker [personal communication, November 15, 2010]. GOSAT (discussed in Chapter 1.1.1)

uses a sun-synchronous orbit with early afternoon sun-lit equator crossing time (∼ 1:30 pm

local time) and orbital inclination near 98◦. Since GOSAT measures CO2 absorption using

reflected solar radiation, the transport model is sampled only during daytime during the

descending mode of the orbit. Subsequent orbits are separated by ∼25◦ in longitude and

∼99 minutes apart. GOSAT points near-nadir as well as at the sun glint spot, which greatly

increases the signal over the ocean. GOSAT measures with 13.4 cross-scans per minute (5

total cross scans) with a field of view of ∼100 km2.

The number of points collected along a GOSAT orbit in one year (assuming cloudy

pixels are not thrown away) according to the orbit simulator is shown in Figure 2.2A. A

maximum of 281 measurements are sampled by GOSAT in one hour. This corresponds to

6744 points in a day and 94,416 points collected over a two week period. The number of

samples over land is much larger than over ocean because of cross-scans. Also note this map

represents the number of samples collected in a 2.5◦x◦2 grid box. Since multiple samples

may occur over these large grid boxes during a single GOSAT pass, it is possible for the

total number of data at a grid cell to exceed the actual number of samples at a single point.
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Figure 2.2: Number of points sampled by pixels in GEOS4-2.5x2 along the GOSAT orbit
in one year for all days (a) and clear days (b).

The total number of measurements per year is independent of the size of the grid box

used for sampling. For example, the number of points per grid box is reduced significantly

when 0.67◦x0.5◦ grid spacing is used at the expense of more grid boxes. Nevertheless, these

numbers represent a significant increase over the number of in-situ points.

A significant portion of satellite data must be thrown away due to cloud contami-
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nation. Cloud contamination is especially bad for GOSAT due to its large field of view

relative to an OCO like instrument. This means GOSAT will only detect CO2 mixing ra-

tios during fair weather days which could lead to temporal sampling biases as discussed in

Chapter 1.1.1, especially if simulated transport differs greatly from reality (or other models)

underneath cloudy pixels. Assuming satellites could see through gaps in clouds, and were

therefore able to sample the atmosphere during inclement weather, it’s possible temporal

sampling errors would be much smaller (as might be the case for a laser sounder). As

discussed in Chapter 5, synthetic data is generated, and then inverted, for all conditions

(clear + cloudy sky) and clear conditions only to test for the effect of fair weather bias on

flux optimization. Clear conditions are defined as grid cells whose cloud optical depth (τ) is

less than 0.3. Cloud optical depth is prescribed from GEOS5-1.25x1 to be consistent with

the transport model, and is defined as the grid scale value (total in-cloud optical depth

from ice and liquid water times the three dimensional total cloud fraction in a grid box).

Data reduction due to discarding pixels with τ > 0.3 is shown in Figure 2.2B. Regions

where clouds persist, such as tropical and boreal latitudes, become very poorly sampled as

a result. The effect of data reduction is obvious when is plotted as a percentage (clear days

divided by all days) in Figure 2.3.

Observations, whether in-situ or remote, must be assigned some measure of uncer-

tainty. This so-called observation error corresponds to the diagonal of the observation co-

variance matrix, R (see next section). Observation error is determined by factors including

(1) measuring instrument error, (2) transport error, and (3) the error due to scale mismatch

between observations and the transport model, also referred to as representativeness error.

Corbin et al. [2006], for example, investigated representativeness error for satellite data

due to sampling only in clear conditions (clear-sky sampling error, discussed in more detail

in Chapter 1) and found bias up to -0.4 ppm. Measurement errors, especially for high

precision in-situ measurements, are typically very small (< 0.5 ppm) compared to model

transport error (up to 20 ppm depending on location, time of day, and type of transport).
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Figure 2.3: Percent of points discarded due to cloud screening for winter (top left), spring
(top right), summer (bottom left), and fall (bottom right).

For satellites, measurement errors are typically much larger, more variable (depending on

the satellite, active versus passive measurements, albedo effects over the surface, latitude,

viewing angle, etc.), and generally larger than 1 ppm. Measurement errors may also be

purely random or systematic and biased.

All OSSEs in Chapter 5 assume synthetic satellite data from GOSAT has a 3 ppm

observation error (σ = 3 ppm) due to random measurement error. This error is added to

synthetic measurements as a measure of instrument precision by creating a vector of white

gaussian noise, with mean of zero and σ = 3, that is equal to the size of the observation

vector for one year. 3 ppm measurement noise is chosen to represent the approximate

uncertainty of GOSAT. This noise is added to synthetic measurements after sampling from

the forward runs.
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2.6.3 MLEF

There are two major steps involved in a data assimilation cycle: (1) the analysis step

and (2) the forecast step. In the analysis step the optimal state is found by minimizing the

cost function provided the observations inside the analysis window. In the forecast step, a

prior for the next cycle is found by applying a forecast model, in this case PCTM, to the

optimal state found in the analysis step.

MLEF attempts to find the maximum likelihood solution for the bias parameters

βGPP , βRESP , and βOCEAN using ensemble-based data assimilation by minimizing the

following cost function

J(β) =
1

2
[y −H(β)]TR−1[y −H(β)] +

1

2
[β − βb]P−1f [β − βb], (2.23)

where β is the vector of unknown bias correction terms (the state vector being solved),

y is a vector of observations, H(β) is an observation operator, βb is the prescribed prior

estimate for bias correction terms, R is the observation error covariance matrix, and Pf is

the forecast (prior) error covariance matrix. The vector of observations is represented by the

synthetic satellite data. GEOS4-2.5x2 serves as the observation operator in Equation 2.23

to communicate surface fluxes to observation locations. The matrix Pf defines the prior

uncertainty of β, also known as the forecast error covariance.

Equation 2.23 is minimized via an iterative conjugate-gradient algorithm with Hessian

preconditioning (described below), and is robust for non-linear processes (not considered

in this study). Iterative minimization converges in a single iteration to the Kalman filter

solution,

β = βb + PfH
T (HP Tf H

T +R)−1[y −H(βb)], (2.24)

when the observation operator is linear and the ensemble size is equal to the size of the

control vector [Zupanski 2005, Appendix A]. Here the control variable is the vector of

unknowns. However, in the following experiments, the ensemble size is much smaller than

the size of the control variable, which may degrade the MLEF solution. As demonstrated by
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Zupanski et al [2007], however, the MLEF solution smoothly converges to the KF solution

as the ensemble size approaches the size of the control vector, which provides justification

for using smaller ensemble sizes.

A major advantage of MLEF is that it produces an estimate of the analysis uncer-

tainty, or analysis error covariance. Unlike variational techniques which require full rank

of the solution, the prior and posterior uncertainties of Equation 2.24 are defined in en-

semble subspace as square roots of the forecast error covariance P
1
2
f and the analysis error

covariance P
1
2
a :

P
1
2
a = P

1
2
f (I +A)−

1
2 (2.25)

where A is the information matrix in ensemble subspace [Zupanski et al., 2007]. The analysis

error covariance changes in time (decreasing, ideally) due to the impact of assimilated

observations involved in A. The information matrix can also be used as a guide when

determining an adequate ensemble size. According to Lokupitiya et al. [2008] the ensemble

size can also be determined from the information measure referred to as Degrees of Freedom

for Sigma, or DFS, with an ensemble size considered appropriate if further increase in

ensemble size, given a certain number of observations, does not change DFS.

The major steps of MLEF, as described in Zupanski [2005], are summarized below.

Step 1: Ensemble Forecast

This step generates ensemble members using a parallel computing environment, using

initial ensemble perturbations in the first assimilation cycle (“cold start”) or the analysis

covariance matrix in subsequent assimilation cycles (“warm start”). Use of the analysis

covariance matrix to generate ensemble members is an important way of propagating in-

formation between successive assimilation cycles. The purpose of this step is to generate

a bunch of random guesses used in minimization of the cost function; the more ensembles

used, the more certain the posterior probably distribution the solution generates. Ensemble

members are also used in this step to calculate the forecast error covariance, which is used
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in a later step for calculation of the updated analysis error covariance.

Step 2: Innovation Vector

This is the first step in the analysis, in which the ensemble forecast is interpolated

to observation locations. These calculations can be done on separate processors for each

ensemble member.

Step 3: Hessian Preconditioning

The first step in minimizing the cost function is to compute second order partial

derivatives of the cost function so that a maximum likelihood analysis solution is obtained

in a single step. This is known as Hessian preconditioning and requires calculation of

matrices from innovation vectors calculated in Step 2, which can also be done through

parallel computing. Eigenvalue decomposition is used to speed up matrix inversion used in

Hessian preconditioning. The motivation for this step is that minimizing the cost function

directly from ensemble-spanned subspace can sometimes be difficult because multimodal

distributions may be present and gradient search algorithms may not converge on the correct

solution. Hessian preconditioning transforms the initial distribution to something that can

be minimized in just a couple steps.

Step 4: Gradient Calculation

The next step is to calculate the gradient in ensemble-spanned subspace. Here the

cost function is redefined through the change of variable introduced through Hessian pre-

conditioning. The first derivative of the new cost function is defined and minimization is

calculated using the preconditioned steepest descent.

Step 5: Analysis Error Covariance

MLEF calculates the analysis error covariance using the optimized analysis deter-

mined from Step 4 (the inverse Hessian calculated at the minimum). The analysis error
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covariance is then used as initial perturbations for the next assimilation cycle.

2.6.4 Covariance Smoothing and Localization

Strong covariance smoothing in the first assimilation cycle and covariance localization

in all cycles are required in experiments where the observation vector is small compared to

the number of unknowns [Lokupitiya et al., 2008]. This was certainly the case in Lokupitiya

et al. [2008] because of the use of relatively sparse in-situ measurements. The observation

vector is significantly larger in this experiment, but smoothing and localization are carried

out nevertheless. This may especially helpful when the number of observations is reduced

by cloud screening. Covariance smoothing is applied during the “cold start” by adding

spatial correlations with an e-folding length of 800 km over land and 1600 km over ocean.

After the first assimilation cycle, covariance smoothing is not necessary. Spatial covariance

improves with time because of propagation of the error covariance through the analysis

system and the opportunity to learn about spatial structure from observations later in the

year. Localization is important in ensemble data assimilation because it prevents sampling

errors at large distances and thereby reduces the ensemble size required for the analysis.

2.6.5 Defining Priors

As a starting point, simulated carbon fluxes are assumed to be unbiased such that

βGPP = βRESP = βOCEAN = 0 at every grid point (in contrast to β’s centered around

a value of 1 as in previous MLEF experiments). In all subsequent cycles, the estimated

biases from the previous cycle are used as priors. If satellite data contains information that

is different from the priors, β’s will evolve with time to match the data. Otherwise, there

will be no need for β’s to change. Several OSSEs are run in Chapter 5 to determine if the

inversion can distinguish between biased and unbiased satellite data. β’s may also change

in time if the inversion “thinks” the satellite data contains information different from the

priors (as might occur, for example, in the presence of biased transport).
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Prior uncertainties for biases are selected that allow β’s to learn from the satellite

data. Choosing too tight or too loose uncertainties may prevent reaching a reasonable

solution. Since the biases aren’t known, constant prior standard deviations are assumed

for the biases at each grid point of σGPP = 0.2, σRESP = 0.2, σOCEAN = 0.1. These

uncertainties are somewhat generous considering they act on large component fluxes of

GPP and RESP . In contrast, if operating on NEE, which is much smaller, more variable,

and therefore more uncertain, these uncertainties would be considered too small.

2.6.6 Terminology

Five types of surface fluxes are discussed in Chapter 5: (1) prior fluxes or “priors”,

(2) analyzed or optimized fluxes, (3) true fluxes or “truth”, (4) flux estimates, and (5)

flux errors. Prior fluxes refer to modeled flux components including GPP , RESP , and

OCEAN that are used as a-priori fluxes for the inversion. These fluxes actually take the

form (1− βGPP ) ∗GPP , (1− βRESP ) ∗RESP , (1− βOCEAN ) ∗OCEAN , but are assumed

to be unbiased at the start of the inversion with βGPP = βRESP = βOCEAN = 0. Analyzed,

or optimized, fluxes refer to a-posteriori fluxes that take the same form as the priors but

with possibly non-zero β′s in the case that the inversion finds a signal in the satellite data

different from prior constraints. Flux components are assumed to be modeled perfectly and

it is the job of the inversion to search the satellite data for possible biases. True fluxes are

fluxes that are prescribed in forward simulations to generate synthetic satellite data. These

can be “hypothetical” fluxes if used to mimic real world sinks by setting β correction terms

to non-zero values, or can reduce to priors when β’s are set to zero. Flux estimates refer to

the difference between analyzed and prior fluxes. Flux errors refer to the difference between

analyzed and true fluxes.
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2.6.7 Flux and Uncertainty Calculation

Fluxes and uncertainties are calculated according to Lokupitiya et al. [2008]. To

estimate monthly average terrestrial NEE, the following calculation is used:

FCO2 = (1− βRESP )RESP − (1− βGPP )GPP, (2.26)

where (...) represents the monthly average. The corresponding uncertainty estimate is given

by

σ2CO2
= (RESP )

2
σ2βRESP

+ (GPP )
2
σ2βGPP

− 2× (RESP )× (GPP )× Cov(βRESP , βGPP ), (2.27)

where σ2βRESP
= V ar(βRESP ) and σ2βGPP

= V ar(βGPP ), where V ar(...) represents the

variance, which are represented by diagonal values within the covariance matrix. Similarly,

the following calculation is used for air-sea exchange:

FCO2 = (1− βOCEAN )OCEAN, (2.28)

with the corresponding uncertainty estimate given by

σ2CO2
= (OCEAN)

2
σ2βOCEAN

, (2.29)

where σ2βOCEAN
= V ar(βOCEAN ).

Mean terrestrial NEE over a region of land comprised of multiple grid boxes can be

estimated as

F̄Region =
1

n

∑
i

Fi =
1

n

∑
i

(1− βRESP )RESPi −
1

n

∑
i

(1− βGPP )GPPi. (2.30)

The corresponding uncertainty in regional monthly NEE is given by

σ2FRegion
=

1

n2

∑
i

∑
j

(RESP )i × (RESP )j × Cov(βRESPi , βRESPj )

+
1

n2

∑
i

∑
j

(GPP )i × (GPP )j × Cov(βGPPi , βGPPj )

− 2

n2

∑
i

∑
j

(RESP )i × (GPP )j × Cov(βRESPi , βGPPj ), (2.31)
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where i and j indicate the grid boxes within the region and n indicates the total number

of grid boxes in the region. Similarly for air-sea exchange,

F̄Region =
1

n

∑
i

Fi =
1

n

∑
i

(1− βOCEAN )OCEANi, (2.32)

with the corresponding uncertainty in regional monthly air-sea exchange given by

σ2FRegion
=

1

n2

∑
i

∑
j

(OCEAN)i × (OCEAN)j × Cov(βOCEANi , βOCEANj ). (2.33)

As noted in Lokupitiya et al. [2008], cross-correlations are added to smooth analyzed

fluxes because the number of unknowns is large. It is also noted that the filter develops

cross-correlations from the data during assimilation, an important advantage of MLEF,

and that these cross-correlations need to be considered during interpretation of uncertainty

estimates.



Chapter 3

MOIST SYNOPTIC TRANSPORT OF CO2 ALONG THE

MIDLATITUDE STORM TRACK

This first results section analyzes forward simulations of CO2 from PCTM to under-

stand and quantify how seasonal interaction of synoptic processes with ecosystem metabolism

modulates seasonality in northern middle and polar latitudes. The concept of the large scale

atmospheric circulation is first discussed from the perspective of streamfunctions on Eular-

ian and Isentropic coordinate systems in order to provide insight into how the mid-latitude

circulation operates. Meridional CO2 transport is then diagnosed in a moist isentropic

framework and parsed to mean and eddy components to demonstrate the role of moist syn-

optic storms for meridional exchange of CO2. The significance of these storms for carbon

cycle studies is demonstrated first through a case study that shows the covariance of trans-

port by these storms with cloudiness and then through budget calculations of atmospheric

CO2 tendencies for a column of air around a latitude circle to show how eddy transport com-

pares to fossil fuel emissions and terrestrial net ecosystem exchange. Finally, a conceptual

diagram is provided to illustrate key interactions between baroclinic waves and atmospheric

CO2.

3.1 Introduction

It has long been recognized that seasonal and diurnal covariance between terrestrial

ecosystem metabolism and fine-scale vertical transport in the atmosphere is a strong deter-

minant of vertical structure in CO2 mixing ratio (the CO2 rectifier, Denning et al. [1995],
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among others). Like the CO2 rectifier, synoptic transport by baroclinic waves along the

mid-latitude storm track involves strong vertical motion and is correlated with ecosystem

metabolism because large-scale baroclinicity and photosynthesis are both driven seasonally

by variations in solar radiation. Baroclinic wave activity is enhanced in winter when res-

piration and decomposition dominate ecosystem metabolism, and is suppressed in summer

when photosynthesis dominates.

Unlike the CO2 rectifier, tracer transport by slantwise convection in baroclinic waves

involves a strong meridional component and is intimately tied to condensation and pre-

cipitation processes. A recent analysis by Pauluis et al. [2008] found that mass transport

along θe on baroclinic waves represents an important component of the atmospheric heat

engine that operates between the equator and poles. This is also an important vehicle for

tracer transport. Poleward transport by rising warm moist air follows a warm conveyor

belt (WCB) above warm fronts, and is compensated by equatorward transport by sinking

cold dry air following a dry air intrusion (DI) behind cold fronts [Cooper et al., 2001; Stohl,

2001].

Pollution transport by WCBs has received much attention in the scientific literature.

Carlson [1981] presented empirical evidence indicating aerosol transport into the Arctic

along θe. More recently, models and aircraft measurements from intensive field campaigns

(e.g., North American Regional Experiment) have helped create conceptual models that

explain how WCBs transport gases such as O3 and CO upward, poleward, and eastward

away from continents and across ocean basins [e.g., Bethan et al., 1998; Cooper et al., 2001].

Strong pollution transport by WCBs is not surprising considering WCBs originate near the

surface in polluted boundary layers and are responsible for most of a mid-latitude cyclones

meridional energy transport [Eckhardt et al., 2004].

CO2 transport by baroclinic waves was described in detail by Fung et al. [1983]

and was included in the study by Tans et al. [1990] that established the concept of a

terrestrial carbon sink but has not received much attention since [However, see Miyazaki et
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al., 2008; Keppel-Aleks et al., 2010]. In Chapter 3, I attempt to refine our understanding

of synoptic transport of CO2 by including the contribution from moist processes embedded

within stormtracks. Analysis of global transport simulations on the Lagrangian vertical

coordinate θe (described in Section 2) provides a means for describing how synchrony of

baroclinic disturbances with seasonal ecosystem metabolism modulates seasonal variations

of CO2 in northern mid-latitudes. Analysis of meridional CO2 transport is also provided

on other vertical coordinates to facilitate interpretation of transport on θe, which is a bit

confusing and counter-intuitive at first.

Meridional transport of seasonally-varying CO2 is analyzed in PCTM [Kawa et al.,

2004; Parazoo et al., 2008], discussed in Section 2.1.1. PCTM produces realistic seasonal and

synoptic variability, as well as interhemispheric mixing. “Eddy decomposition,” discussed in

Chapter 2.5.2, is used to isolate transport signals associated with synoptic processes. There

is extensive discussion of the influence of mean and eddy components of the atmospheric

circulation on seasonal variations of CO2, including vertical and horizontal spatial structure,

zonal and time average column integrated transport, and sensitivity to vertical coordinate.

Analysis of covariance of baroclinic waves with ecosystem scale metabolism is carried out

to determine the influence of meridional sloshing of CO2 between middle latitudes, where

the bulk of the terrestrial biosphere resides, and high latitudes, where vegetation is sparse.

A conceptual diagram that summarizes key interactions between baroclinic waves and CO2

mixing ratio is provided at the end of Chapter 3.

3.2 The Zonal Mean Circulation - Streamfunctions

Before analyzing atmospheric transport of CO2 by mean and eddy circulations, the

large scale atmospheric circulation operating between equator and pole is described. The

global atmospheric circulation transports high energy air from equatorial regions to polar

regions. This includes poleward flow of high energy parcels of air and equatorward flow

of low energy parcels. Due to the turbulent nature of the atmosphere, parcel trajectories
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vary widely, and it becomes necessary to describe the circulation in an averaged sense

by computing zonal and temporal means over a sufficiently long period. Pauluis et al.

[2008] give an excellent overview of global mean circulations calculated from the NCEP-

NCAR Reanalysis on p, θ, and θe. In this section, calculations of streamfunctions made

by Pauluis et al. [2008] are repeated using GEOS4-1.25x1 to illustrate key points and

determine whether circulations in GEOS4-1.25x1 are consistent with NCEP-NCAR.

3.2.1 Streamfunction on Terrain Following Surfaces (η)

The Eulerian mean circulation is a common technique for describing the atmospheric

circulation. It is produced by averaging the flow on constant pressure, geopotential height,

or terrain following coordinates. The circulation is conceptually and quantitatively similar

in all cases. Since transport in PCTM is calculated on the terrain following coordinate η,

calculate of the Eulerian mean streamfunction Ψ is performed on η, where Ψη is defined as:

Ψη (η0, φ) =
1

τ

∫ τ

0

∫ 2π

0

∫ ps

0
H(η0 − η)va cosφ

dp

g
dλdt. (3.1)

Here, η0 is some reference value of η, p is pressure, φ is latitude, τ is the time period over

which the average is computed, λ is longitude, a is Earth’s radius, v is the meridional

velocity, g is the gravitational acceleration, and H(x) is the Heavyside function, with H(x)

= 1 for x ≥ 0 and H(x) = 0 for x < 0.

Plots of Ψ effectively show zonally averaged vertical and meridional velocity, together

in one diagram. Lines of constant Ψ cannot intersect the Earth’s surface; if they did, that

would imply a flow of air across the Earth’s surface. Similarly, lines of constant Ψ cannot

extend upward into space. Figure 3.1 shows the annual mean Ψη as a function of latitude

for GEOS4-1.25x1 for 2005.

The annual mean circulation consists of a three cell structure in both hemispheres:

the Hadley cell in the tropics, the Ferrel cell in mid-latitudes, and the polar cell at high

latitudes. The Hadley and polar cells, with air parcels moving poleward at high altitude

and equatorward at low altitude, are direct circulations that transport energy toward the



61

Figure 3.1: The global mean circulation computed on Eta surfaces from GEOS4-1.25x1 for
2005. Contour interval is 2.5 x 1010 kg s−1. Solid red contours are positive values of Ψ and
correspond counterclockwise circulations, with northward flow at low levels and southward
flow at high levels. Dashed blue contours are negative values of Ψ and correspond to
clockwise circulations, with southward flow at low levels and northward flow at high levels.

poles. Deep rising motion occurs near the equator in the annual mean, with sinking motion

on either side in the sub-tropics. The zonal band of deep rising motion shifts north and

south seasonally with the Inter-Tropical Convergence Zone (ITCZ) and the position of the

sun. The strongest vertical motion occurs near η = 0.5, which roughly corresponds to

the middle troposphere, or 500 mb. The polar cells, in comparison, are very weak in the

annual mean. The Ferrel Cell, an indirect circulation (energy transport is from low to

high energy) in mid-latitudes, is strongest in the Southern Hemisphere, and corresponds to

poleward flow near the surface and equatorward flow at high altitude that together transport

energy towards the equator. Comparison to streamfunctions computed from NCEP-NCAR
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Reanalysis [Pauluis et al., 2008] indicates that the general circulation is slightly stronger in

GEOS4-1.25x1.

Synoptic scale eddies, which result from baroclinic instability in the unstable sym-

metric circulation, are not apparent in the Eulerian mean circulation. Eddies transport

more energy toward the poles than the Ferrel cell transports toward the equator such that

total energy transport in the mid-latitudes is poleward. The Ferrel cell is a response of the

MMC to energy and momentum transport by synoptic eddies. Energy transport acts to cool

the subtropics, inducing the sinking branch of the Ferrel cell, and warm higher latitudes,

inducing the rising branch of the Ferrel cell. Eddy transport of angular momentum causes

the Ferrel cell to adjust the meridional branches of the circulation; i.e., angular momentum

transport out of the subtropics to middle latitudes is balanced in the MMC by Coriolis

acceleration associated with an equatorward component of the Ferrel Cell.

3.2.2 Streamfunction on θ

The mean circulation can also be described through averaging on isentropic surfaces.

The streamfunction on θ, Ψθ, is defined by

Ψθ (θ0, φ) =
1

τ

∫ τ

0

∫ 2π

0

∫ ps

0
H(θ0 − θ)va cosφ

dp

g
dλdt. (3.2)

This is identical to Equation 3.1 except η0 has been replaced with θ0. Figure 3.2 shows the

annual mean streamfunction on θ, which looks very different from η. Direct circulations

extend from the Equator all the way to the poles. Since the atmosphere is statically stable

and θ is monotonic with height, it can be said that the isentropic circulation is characterized

by poleward flow at high altitudes and equatorward return flow near the Earth’s surface.

Radiative cooling causes θ to decrease during poleward flow while sensible heating causes θ

to increase during the equatorward return flow. Strong diabatic heating by solar radiation,

latent heat release, and sensible heating cause cross-isentropic flow and deep upward ver-

tical motion in the tropics, while strong radiative cooling causing cross-isentropic flow and

subsidence at high latitudes. Ferrel cells do not appear in the isentropic circulation.



63

Figure 3.2: Same as Figure 3.1, except computed on potential temperature surfaces.

To understand why isentropic coordinates exhibit poleward transport at all latitudes

while Eulerian coordinates exhibit poleward transport everywhere except mid-latitudes,

we write the following equation for mass transport using eddy decomposition technique

described in Chapter 2:

[mv] = [m][v] + [m∗v∗], (3.3)

where m is the pseudo-density and v is the meridional wind. The first term on the RHS of

Equation 3.3 is the product of the zonally averaged pseudo-density with the zonally averaged

meridional wind. The second term arises from correlated fluctuations of the pseudo-density

and meridional wind. The first term represent mass transport by the mean flow, which is

supplemented by eddy mass flux when variations of meridional wind are correlated strongly

enough with variations of pseudo-density.
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Transport by the zonally averaged flow, [m][v], dominates the circulation in the tropics

where variations of mass are small because of weak temperature gradients. This leads to

small values of m∗ on both η and θ and the eddy mass flux is trivial in the tropics. In the

mid-latitudes, however, the zonally averaged meridional wind is small because of geostrophic

flow. Eddy mass flux dominates mass transport in midlatitudes because stationary and

baroclinic waves force large variations of mass and hence m∗ becomes large. Variations

of mass on η are still too small, however, to stand out in Eulerian averaged circulations,

and consequently the zonally averaged flow dominates the Eulerian circulation as seen in

Figure 3.1. Variations of mass are large on isentropic surface such that [m∗v∗] takes over

from the zonally averaged flow. Variations of mass are much larger on θ than η because,

as discussed in Chapter 2, isentropic circulations are more indicative of parcel trajectories,

where potential temperature of an air parcel is approximately conserved in the absence of

condensation.

3.2.3 Streamfunction on θe

It is clear from Figure 3.2 that, while energy transport is poleward in both hemi-

spheres, the isentropic flow is only approximately conserved. In particular, the Northern

Hemisphere mid-latitudes experience fairly severe cross isentropic flow near 40◦N due to

latent heat release by condensation and precipitation along stormtracks. This problem is

alleviated somewhat by accounting for latent heat release associated with moist air parcels.

θe, defined in Chapter 2.5.3, is conserved for reversible adiabatic transformations. Because

θe includes a contribution from the latent heat content of water vapor, phase transitions

from vapor to liquid are also conserved.

The streamfunction on θe, Ψθe , is defined as:

Ψθe (θe0, φ) =
1

τ

∫ τ

0

∫ 2π

0

∫ ps

0
H(θe0 − θe)va cosφ

dp

g
dλdt. (3.4)

This is identical to Equation 3.2 except θ0 has been replaced with θe0. Figure 3.3 shows the

annual mean streamfunction on θe, which looks similar to θ except for a few key differences.



65

First, and perhaps most important, calculations of Pauluis et al [2008] show that total mass

Figure 3.3: Same as Figure 3.2, except computed on equivalent potential temperature
surfaces.

transport on θe is approximately twice that on θ. The authors use the joint distribution of

mass transport on θ and θe to show that the additional mass transport corresponds to a low-

level poleward flow of warm moist air with high θe indicative of air parcels that are nearly

convectively unstable. The circulation is strongest in mid-latitudes along the stormtrack

where synoptic scale eddies advect low-level warm moist air upward and poleward before

subsiding over the poles. Accounting for latent heating in tropical and midlatitude regions

of strong precipitation has eliminated much of the cross-isentropic flow. It is also worth

noting that the potential temperature of the surface equatorward return flow increases at

a faster rate on θe because of surface evaporation.
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3.3 Energy Transport

The atmospheric heat engine operating between the equator and poles is an impor-

tant vehicle for tracer transport. If streamfunctions provide insight into what the general

circulation looks like, eddy decomposition describes how zonally symmetric and asymmetric

components of the general circulation move energy and tracer around. Interpretation of the

general circulation is also sensitive to the vertical coordinate; as will be shown later, eddy

decomposition and hence tracer transport by difference components of the circulation is also

sensitive to vertical coordinate. Such sensitivity will ultimately aid perception of important

mechanisms that govern meridional CO2 transport.

The streamfunction calculated on θe suggests that the mid-latitude circulation is

driven strongly by asymmetries from the zonally symmetric circulation (i.e., eddies). To

illustrate the relative importance of heat transport by eddies compared to the zonally

symmetric circulation, eddy decomposition is used to parse moist static energy (h =

cpT + gz + Lq, where T is temperature, g is gravity, z is altitude, and L is latent heat)

transport to mean, transient, and stationary terms as discussed in Chapter 2.5.2 according

to the expression:

2πa cosφ

∫ ζtop

ζsfc

[mζvζhζ ]
dζ

g
= 2πa cosφ

∫ ζtop

ζsfc

[
(mv)ζ

] [
hζ
] dζ
g

+ 2πa cosφ

∫ ζtop

ζsfc

[
(mv)ζ

∗
hζ
∗
] dζ
g

+ 2πa cosφ

∫ ζtop

ζsfc

[
(mv)′ζ

] [
h′ζ

]dζ
g

+ 2πa cosφ

∫ ζtop

ζsfc

[
(mv)′∗ζ h

′∗
ζ

]dζ
g
. (3.5)

Equation 3.5 gives units of energy transport in PW. As mentioned at the end of Section

2.5.2, the third and fourth terms on the RHS of Equation 3.5 will collectively be referred

to as transport by transient eddies.

Moist static energy is essentially a measure of the energy within an air parcel due to

potential energy, sensible heat or internal energy, and latent heating. Moist static energy
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transport is calculated on η, θ, and θe, vertically integrated according to Equation 3.5, and

plotted in Figure 3.4. Positive values indicate northward transport and negative values

Figure 3.4: Annual mean transport of moist static energy by various components of the
mid-latitude circulation. Energy has units of PW month−1

indicate southward transport. Energy transport peaks in middle latitudes in both hemi-

spheres near 45◦N and crosses zero near the equator, indicating the atmospheric heat engine
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is moving energy away from low latitudes and into high latitudes.

Interpretation of energy transport by mean and eddy terms is sensitive to vertical

coordinate and somewhat misleading. When calculated on η (Figure 3.4A), the MMC

(mean circulation) dominates transport out of the subtropics through the Hadley Cell.

Transport by the MMC at lower latitudes is actually stronger during individual seasons,

but this transport largely cancels in the annual mean. Eddies dominate transport in the

annual mean in mid-latitudes, with transient eddies important in both hemispheres. While

transient and stationary waves contribute equally in the NH, eddies are dominated by

transient eddies in the SH due to the large percentage of ocean coverage.

Eddy transport is much weaker on θ and almost non-existent on θe. In general, trans-

port by the MMC is dominant in the isentropic framework. These results are misleading,

however, because h and θe are closely related by cpTdlnθe ≈ dh, where T is the temperature

of the condensation level, and are thus very strongly correlated in the lower troposphere.

Because θe and h within air parcels are both conserved during adiabatic vertical motion, and

synoptic eddies tend to follow the path of isentropes during moist ascent along stormtracks,

zonal and temporal perturbations of h are approximately zero when calculated on θe such

that “eddy” transport of h becomes small in the isentropic framework. It is therefore more

convenient to use Eularian coordinates such as η when describing energy or heat transport

by baroclinic waves.

3.4 Seasonal Covariance of Baroclinicity and Ecosystem Metabolism

The motivation behind including eddy decomposition of energy transport in this study

is to show how seasonal variations of meridional transport of energy and heat correspond

with plant growth and decay. To this end, the seasonal distribution of eddy transport of h,

as calculated on η, is plotted in black in Figure 3.5. Transport of h is much more vigorous

during winter (DJF) than summer (JJA) in the NH due to the strong meridional temper-

ature gradient. By comparison, there is relatively little seasonal change in eddy transport
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Figure 3.5: Seasonal covariance of moist static energy transport (h, black line) and zonally-
monthly averaged terrestrial net ecosystem exchange (NEE, green line) for boreal winter
(A, Dec-Jan-Feb) and boreal summer (B, Jun-Jul-Aug). NEE is plotted as a zonal mean in
units of µmol m−2 s−1 on the right y-axis.

in the SH. The green line in Figure 3.5 represents zonally averaged NEE as simulated by

SiB. NEE has the largest seasonality in northern mid-latitudes where the bulk of global

land area resides and ecosystem metabolism is limited by seasonal variations in solar ra-

diation. During DJF there is net respiration of CO2 to the atmosphere due to microbial
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decomposition of plant litter. During JJA there is net uptake of CO2 from the atmosphere

due to photosynthetic assimilation. NEE is much weaker in the SH where total land area

and biomass are reduced. While the tropics are the most biologically active part of the

planet, seasonality of zonally averaged NEE is small due to cancellation of respiration and

GPP. Synoptic transport of h is correlated with ecosystem metabolism in the NH because

large-scale baroclinicity and photosynthesis are both driven seasonally by variations in solar

radiation. Baroclinic wave activity, as depicted by eddy energy transport in Figure 3.5, is

enhanced in winter when respiration and decomposition dominates ecosystem metabolism,

and is suppressed in summer when photosynthesis dominates.

3.5 Meridional Transport of CO2 by Mean and Eddy Circulations

This section provides analysis of the influence of covariance of heat transport and

surface fluxes of CO2 on meridional transport of CO2. Eddy decomposition is used to assess

how transport by eddy and mean circulations contribute separately to CO2 seasonality in

northern middle and polar latitudes. Total average meridional transport at an arbitrary

level ζ is calculated according to the expression

2πa cosφ
Mc

Mair
[mζvζCζ ]

dζ

g
, (3.6)

giving units of PgC K−1 month−1, where Mc is the molecular weight of carbon and Mair is

the molecular weight of air. Mean and eddy components of transport are calculated the same

way with total transport decomposed according to Equation 2.16 in Chapter 2. Equation 3.6

is used to show vertical distributions of CO2 transport. The zonal mean is removed to

discuss spatial distributions of transport (this analysis assumes zonal wind is zero). The

vertically integrated distributions of eddy and mean transport is also analyzed. Column

integrated meridional transport is calculated in units of PgC month−1. The equation for
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CO2 transport is similar to that discussed above for h transport:

2πa cosφ
Mc

Mair
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g
. (3.7)

Again, the third and fourth terms on the RHS of Equation 3.7 are referred to as transient

eddies.

3.5.1 CO2 Transport by the MMC

Seasonal variations in the vertical distribution of CO2 transport by the MMC, as

calculated on θe, are summarized in Figure 3.6. Zonal mean poleward and equatorward

transport are in opposite directions within a vertical column throughout the year in northern

latitudes. Transport is strongest during winter (Figure 3.6B) and tends to dominate the

annual mean signal (Figure 3.6A). Transport during summer (Figure 3.6C) resembles the

winter pattern except that transport throughout the column is weaker and occurs at higher

θe due to warmer temperatures.

The pattern of seasonal transport by the MMC is explained to some degree by the

mean distribution of atmospheric CO2 and meridional mass fluxes, which are plotted to-

gether in Figure 3.7. During boreal winter (Figure 3.7B), for example, the northern mid-

latitudes are a source region for atmospheric CO2 through ecosystem respiration (see Fig-

ure 3.5A) and fossil fuel emission such that CO2 accumulates near the surface (dark red

shading) and decreases vertically into the upper atmosphere (shading tapers from dark red

near 50◦N and 260K to yellow and blue upward and outward; note that red values indicate

CO2 that is high relative to the column mean, i.e. positive CO2 anomaly, and blue shading

indicates low CO2 relative to the column mean). It should be noted that θe is not continu-

ous from equator to pole because of surface evaporation and sensible heating of air parcels
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Figure 3.6: Diagnosis of vertical distribution of atmospheric CO2 transport by the MMC
on θe in the annual mean (A) and during boreal winter (B) and summer (C). Red (blue)
contours indicate poleward (equatorward) transport. Units are PgC K−1 month−1

moving equatorward along the surface [Pauluis et al., 2008]. Also, because θe slopes upward

and poleward toward cold air, there is net gain in altitude following θe poleward (with loss

in altitude due to radiational cooling of 1◦C day−1).

Red and blue contours in Figure 3.7 indicate the mean poleward and equatorward

meridional mass flux, respectively. According to Figure 3.7B, transport by the MMC during
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Figure 3.7: Zonal and monthly mean distribution of CO2 (shaded) and mass flux (contours)
in the annual mean (A) and during boreal winter (B) and summer (C). Shaded values are
represend by the colorbar in (C), where the mean value in the column has been subtracted
(hence “CO2 anomaly”). Contour intervals of mass fluxes are 0.05 Pg s−1 K−1. Red solid
(blue dashed) contours correspond to poleward (equatorward) flow.

boreal winter leads to mean poleward transport of relatively low CO2 (with respect to the

vertical mean) at large θe (corresponding approximately to the upper troposphere in an

isentropically stable atmosphere) and equatorward transport of relatively high CO2 at small

θe (near the surface), consistent with Miyazaki et al. [2008]. Poleward transport of low CO2
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by the MMC during boreal winter is indicated by red contours in Figure 3.6B. Equatorward

transport of high CO2 is indicated by blue contours.

Mean mass circulation during boreal summer occurs in the same sense as winter

transport (see red and blue contours in Figure 3.7C); during summer, however, the equator-

to-pole temperature gradient is strongly reduced and the strength of the atmospheric circu-

lation weakens. At the same time, warmer temperatures and increased precipitation create

a sink region for atmospheric CO2 in the mid-latitudes through enhanced photosynthetic

uptake (see Figure 3.5B), causing reversal in the large-scale vertical CO2 gradient north

of ∼30◦N (except near the surface because of deep convective uplifting of low CO2 [see

Miyazaki et al., 2008]).

3.5.2 CO2 Transport by Synoptic Eddies

Unlike the mean circulation, which essentially is a “statistical circulation” determined

by zonal and temporal averaging, eddy circulations are more physical and have vertical and

horizontal structure that can be witnessed and experienced in real life. This section is

therefore organized into subsections based on the spatial structure being characterized.

Other subsections, including “Cyclonic Case Study” and “Significance of Eddy Transport”

are aimed at clarifying mechanisms associated with eddy transport.

Vertical distribution of Eddy Transport

Transport by eddy circulations is weaker than mean transport by several orders of

magnitude, but poleward through most of the troposphere in northern latitudes (north of

30◦N) in the annual mean (Figure 3.8A). Poleward transport by synoptic eddies is strongest

during boreal winter (Figure 3.8B) with peak transport near 45◦N near θe = 300 K. During

boreal summer (Figure 3.8C) there is convergence of poleward and equatorward eddy trans-

port near 60◦N due to net biological uptake of CO2. Opposing directions of transport in

the column south of 30◦N, most noticeable during boreal winter, are a result of transport
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Figure 3.8: Diagnosis of vertical distribution of atmospheric CO2 transport by synoptic
eddies (stationary and transient waves combined) on θe in the annual mean (A) and during
boreal winter (B) and summer (C). Red (blue) contours indicate poleward (equatorward)
transport. Units are PgC K−1 month−1

by monsoonal circulations in tropical latitudes, which are manifested in stationary waves

due to deviations from the zonal mean circulation.

Eddy transport is forced through covariance between perturbations (temporal and

zonal) to the mean circulation and to mean CO2. Positive (negative) perturbations to the
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mean circulation represent anomalous poleward (equatorward) mass flux, with poleward

flow of warm moist air ( θe > ∼ 280K) representing WCBs and equatorward flow of cold

dry air ( θe < ∼ 280K) representing DIs. Anomalous mass flux along θe causes corresponding

perturbations to mean CO2 (with respect to latitude). Because CO2 decreases northward

on θe throughout much of the troposphere in the annual mean (Figure 3.7A), anomalous

poleward mass flux causes positive perturbations of CO2. Poleward transport in the annual

mean and during boreal winter is a result of positive covariance of anomalous mass flux

and CO2. Equatorward transport north of 60◦N during summer, on the other hand, is a

result of negative covariance. Negative covariance and thus equatorward transport result

primarily from changes in the sign of meridional CO2 gradients.

Cyclonic Case Study

Examination of a particular case illustrates the eddy transport mechanism. A com-

posite surface map (Figure 3.9A) shows an extratropical cyclone that passed over the con-

tinental United States on 13 January 2005. A low- pressure system is centered over Lake

Michigan, with corresponding warm and stationary fronts (solid red line and red-blue line,

respectively) passing into New England and a cold front (solid blue line) over the Great

Plains extending to Mexico. In the warm sector of the cyclone (southeast United States)

there is poleward flow (depicted by wind vectors at surface stations pointing north) of warm

moist air (temperatures from 10-20◦C, high dewpoints). Following the classic mid-latitude

cyclone [Cooper et al., 2001; Stohl et al., 2001], this air follows a WCB, rises above the

surface warm front, and spreads into Canada and the Atlantic. In the cold sector is equa-

torward flow (wind vectors point south) of cold dry air out of Canada (temperatures from

-10-0◦C, low dewpoints), which descends behind the cold front.

Figure 3.9B shows the cyclone influence on meridional CO2 transport at θe = 300K.

Since poleward moving air originates at subtropical latitudes where air is warmer and

moister than equatorward moving air, θe intersects the surface at higher latitude in the
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Figure 3.9: Case study from 13 Jan 2005 showing an example of eddy CO2 transport asso-
ciated with a typical mid-latitude cyclone. The surface composite map in (A) is reproduced
with permission of Unisys Corporation (c) 2011. Model output of anomalous CO2 (ppm,
shaded) and mass flux (1x10−4 kg m−1 K−1, contour) along θe = 300 K is plotted in (B).

warm sector (∼42◦N) than the cold sector (∼27◦N). The primary pattern is for equator-

ward mass flux of low CO2 air in the cold sector and poleward flux of high CO2 air in

the warm sector. As equatorward moving air sinks it crosses many pressure levels and

creates large anomalous mass fluxes. Cold sector transport is dry; q is zero on θe and

equatorward transport is equal on θ (not shown) and θe. Similarly, poleward moving air
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crosses many pressure levels during moist ascent, with equally large anomalous mass fluxes.

Warm sector transport is moist and q is nonzero; since θe conserves energy

in the presence of latent heating by condensation while θ gains energy, θe is

more indicative of parcel trajectories along moist conveyors. This portion of eddy

transport is parsed to the mean term when diagnosed on θ, reducing eddy CO2 transport

by nearly half (see discussion below). Because covariance of CO2 and mass flux is positive

in the warm and cold sectors in the time and zonal mean at θe = 300K, net eddy transport

over North America is poleward. Eddy transport over Eurasia, as well as along other θe

surfaces, has different latitudinal origins, with corresponding transport dependent on the

latitudinal CO2 gradient and the amount of convective instability of θe, but follows the

same principle.

Cloudiness Associated with Eddy Transport

Migrating cyclones responsible for CO2 advection also cause a great deal of pre-

cipitation and cloudiness. In the case illustrated above, radar (color filled stippling in

Figure 3.9B) indicates observed precipitation and filled surface stations cloudiness. Radar

shows that precipitation during this day occurs primarily near cold and warm fronts. Sur-

face station analysis indicates that moist conveyors in the warm sector are also very cloudy.

Covariance among condensing air (i.e. clouds), precipitation, CO2, and heat

transport means that CO2 transport along the east side of baroclinic waves will

be hidden from satellite observing systems. Transport along the DI, however, is dry

and sunny (open surface stations) and detectable by satellites.

Significance of Eddy Transport

While covariance of zonal and temporal anomalies of mass flux and CO2 are positive

and thus poleward on average for stationary and transient waves, there are many instances

of net equatorward transport of CO2 by eddies, as seen for example over the Great Lakes in
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Figure 3.9B. It is a useful exercise to calculate the correlation coefficient of the data series

used to calculate the eddy terms to get a sense at the noisiness of correlations of mass flux

and CO2. A plot of the annual mean correlation coefficient for transient and stationary

waves is shown in Figure 3.10.

Figure 3.10: Annual mean correlation coefficient of mass flux and CO2 deviations for (A)
transient eddies and (B) stationary eddies (bottom plot), plotted as a function of θe. Col-
orbar is the correlation coefficient.
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The average correlation is positive throughout the northern atmosphere, consistent

with predominantly poleward transport in Figure 3.8A. Stationary waves exhibit correla-

tions between mass flux and CO2 deviations of about 0.25 in northern middle latitudes and

values close to 0.4-0.5 at higher northern latitudes. Correlations within transient waves

peak near 30-50◦N and are closer to 0.1. Higher correlations in stationary waves suggest a

stronger and more systematic correspondence between mass flux and CO2 deviations, with

net flow dominated by poleward transport of CO2. Low correlations in transient waves in

the annual mean suggest that transport by traveling cyclones is noisy and mixed between

poleward and equatorward transport. Eddy correlations have some seasonality with max-

imum values attained during boreal winter, but are not significantly different in shape or

magnitude from the annual mean (not shown).

Horizontal Distribution of Eddy Transport

The previous discussion, including case studies, have facilitated understanding of

some of the key underlying mechanisms responsible for patterns of eddy CO2 transport in

the NH. The next step is discussion of the longitudinal distribution of time-averaged column

integrated eddy transport. This analysis will provide an idea of the horizontal extent of

zonally averaged eddy terms discussed in Figure 3.8. The spatial distribution of column

integrated stationary and transient waves is plotted in Figure 3.11.

Patterns of eddy CO2 transport emerge over spatial scales of 1000’s of km’s. Com-

parison to a climatology of WCBs presented in Figure 3 of Eckhard et al. [2004] suggests

that dominant patterns of combined poleward CO2 transport by stationary and transient

eddies (Figure 3.11A) are coincident with climatologically favorable regions for WCBs. Like

WCBs, CO2 transport tends to follow a northward and eastward track originating in sub-

tropical latitudes (∼20-30◦N), peaking in middle latitudes (∼40-50◦N), and terminating at

the southern base of the polar vortex (∼70◦N). The most favorable regions tend to originate

over land (e.g., southern portion of the United States and Tropical Asia) and terminate over
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Figure 3.11: The annual mean spatial distribution of column integrated transport by (A)
transient and stationary eddies, (B) transient eddies and (C) stationary eddies. The colorbar
for each plot is shown at the bottom in units of PgC month−1
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the eastern portion of the adjacent ocean (e.g., Pacific Ocean and Atlantic Ocean, respec-

tively). Transport tends to be dominated by transient eddies in the early stage of an eddy

transport event (Figure 3.11B) after which stationary eddies take over (Figure 3.11C) sug-

gesting that instabilities in baroclinic waves initiate poleward transport by synoptic eddies.

3.5.3 Vertically Integrated Transport

Column integrated transport in the annual mean and during boreal winter and sum-

mer are shown in Figure 3.12. In the annual mean, total transport in the column is equa-

torward south of 45◦N and poleward north of 45◦N (Figure 3.12A). Since net terrestrial

biological surface flux is zero in the annual mean due to forced balance between GPP and

respiration, net transport in the annual mean primarily reflects transport of fossil fuels out

of northern mid-latitudes. Seasonal transport is, however, much larger and more strongly

influenced by seasonal biology. Transport during boreal winter (Figure 3.12B), for example,

is reminiscent of annual mean transport in pattern but much stronger in amplitude due to

strong decomposition and respiration in the same zone as fossil fuel emissions. Transport

during boreal summer (Figure 3.12C) leads to convergence of CO2 near 60◦ where strong

terrestrial uptake occurs.

Vertically integrated transport by the MMC gives insight into the interplay of the

strong vertical CO2 gradient and the single overturning cell exhibited in the mean circulation

field on θe shown in Figures 3.6 and 3.7. While poleward and equatorward transport by the

MMC are large, they largely cancel one another with smaller residual equatorward transport

in the annual mean with maximum equatorward transport of -0.6 PgC month−1. During

summer, residual mean transport is poleward in the column integral, reflecting the change in

sign of the vertical CO2 gradient. Net eddy transport, however, is poleward throughout the

column (Figure 3.8) and in the column integral (Figure 3.12) in the annual mean. Although

eddy transport is orders of magnitude smaller than mean transport within a single moist

isentropic layer, it is poleward through the entire column. Annual mean transport by
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Figure 3.12: Column integrated transport in the annual mean (A) and during boreal winter
(B) and summer (C). Total transport (black line) is parsed into transport by total eddy
(red, transient + stationary), transient eddy (magenta), stationary eddy (cyan) and mean
(blue) components.

synoptic eddies is therefore systematically opposed in the column by transport

by the MMC . Poleward eddy transport peaks at 0.6 PgC month−1 in the annual mean

and 1.0 PgC month−1 during boreal winter. Partitioning of eddy transport to stationary

and transient components reveals similar patterns to those discussed in the spatial plots of
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Figure 3.11, namely that eddy transport is dominated by transient eddies at lower latitudes

and determined equally by transient and stationary eddies at higher latitudes.

3.5.4 Dependence on Vertical Coordinate

Although PCTM is run on a terrain following coordinate system, partitioning of

transport to eddy and mean components is sensitive to vertical coordinate. To demonstrate

this, eddy and mean CO2 transport are diagnosed on η, θe and θ coordinate systems as

discussed in the beginning of this section and in Chapter 2.5.3, column integrated as in

Figure 3.12, and plotted as annual means in Figure 3.13. Note that column integrated

transport along coordinates which are monotonic with height (η and θ at all latitudes and

Figure 3.13: Column integrated transport in the annual mean as a function of vertical co-
ordinate. Transport is calculated on moist isentropic surfaces (θe, solid line), dry isentropic
surfaces (θ, dashed line), and terrain following surfaces (η, dotted line). Total transport
(black) is partitioned to transport by eddy (red) and mean (blue) components.

θe outside the tropics) is equal and therefore conserved. There is, however, a small error



85

in θe in the tropics where a mid-tropospheric minimum in θe occurs. If total mass and

CO2 are conserved in a column at any given latitude, total transport will (and should

be) independent of coordinate system. This error has been investigated and is attributed

to small errors in mass conservation when regridding in the tropics from monotonic η to

non-monotonic θe.

Outside of this small error in the tropics, total transport is conserved and therefore

independent of coordinate system. The partitioning of total transport to eddy and

mean components, however, is strongly sensitive to vertical coordinate . Focusing

on the northern mid-latitudes with transport on θe the reference (solid lines), eddy transport

decreases by nearly half when calculated on θ (red dashed line). Because total transport

is conserved, decreased poleward transport by eddies in a θ framework is compensated by

decreased equatorward transport by the MMC (dashed blue line).

Mass transport on θe includes a large contribution from moist air rising within storm-

tracks [Pauluis et al., 2008], while averaging on dry coordinate systems such as θ misses

entirely this contribution. As demonstrated in Figure 3.13, the corresponding transport

ends up in the mean term and in the annual mean case of CO2 transport strongly reduces

eddy CO2 transport. The vertical component of motion gained from latent heat release

in condensing moist air is therefore critical for describing tracer transport by moist ascent

within synoptic waves. Increased transport due to latent heat release is most important in

regions of condensing air such as moist conveyors in the warm sector of extratropical cy-

clones. For example, in the cold dry sector of the case study shown in Figure 3.9 (west side

of a typical baroclinic wave), water vapor (q) is zero, θe is reduced to θ, and equatorward

transport is equal on θ and θe. Warm sector transport, however, is moist and q is nonzero.

While θe conserves energy in the presence of latent heating by condensation, θ gains energy.

As seen in Figure 3.13, this portion of eddy transport is parsed to the mean term when

transport is diagnosed on θ. As a result, column integrated transport by eddies is strongly

diluted on θ.
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While eddy and mean transport patterns behave very similarly due to the Lagrangian

nature of parcel following coordinates such as θ and θe, transport in an Eularian framework

such as the terrain following coordinate η provides an entirely different interpretation of

transport within an atmospheric fluid. Column integrated eddy transport on η (red dotted

line) actually opposes eddy transport on isentropes. The same phenomenon occurs in the

case of mean transport. Both terms are nearly an order of magnitude smaller than their

isentropic counterparts.

To demonstrate the effect of an Eularian framework on interpretation of CO2 trans-

port, vertical distributions of CO2 and mass flux are calculated on θe and η. Annual mean

vertical profiles are shown in Figure 3.14. The annual mean CO2 distribution is clearly sen-

sitive to coordinate system. In the Lagrangian framework, CO2 gradients are very strong

with respect to latitude and height and carry potential for large eddy CO2 fluxes in re-

sponse to baroclinic instabilities in the flow (Figure 3.14A). In the Eularian framework,

CO2 gradients are extremely weak and carry little capacity for strong transport by eddies

(Figure 3.14B). While η is tied to the surface and has little variability in space, θe is strongly

sensitive to moisture and heating and is highly variable in time and space. Since θe surfaces

tilt upward towards cold air, their climatologically favorable distribution is upward slant

from equator to pole. This means parcels of air traveling along isentropes start in polluted

boundary layers where CO2 mixing ratios are enhanced for much of the year due to fossil fuel

emission and respiration and rise upward and poleward along stormtracks out of polluted

boundary layers into the free troposphere where CO2 mixing ratios are depleted relative

to the surface. CO2 therefore decreases from equator to pole following θe but increases

following η.

The diagram in Figure 3.15 further illustrates this paradox. A vertical cross section

of the atmosphere is shown for the midlatitudes from 20-70◦N (north and poleward is to

the left) from the surface up to the tropopause. For the purpose of this argument, attention

is focused on the polar front and the red and blue air streams in the center of the diagram
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Figure 3.14: Zonal and month mean distribution of CO2 (shaded) and meridional mass flux
(contours) in the annual mean on θe (A) and η (B). The colorbar for CO2 (in ppm) is shown
on the bottom. CO2 is plotted on the same scale.

where extratropical cyclones and anticyclones occur. Dashed lines are not exact but can

be thought of as isentropes, which are tilted upward and poleward. From our discussion of

CO2 distributions in the Eularian framework it was shown that CO2 tends to build up near

the surface with peak values north of 50◦N. From an Eularian framework along for example
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Figure 3.15: Diagram of isentropic surfaces and air streams along polar front (courtesy
http://www-das.uwyo.edu/ geerts/cwx/notes/chap01/tropo.html).

the surface, poleward moving air flows, on average, directly into CO2 enriched air from the

south such that CO2 depleted air is carried poleward. This results in negative covariance

of CO2 and mass flux and net eddy CO2 transport is equatorward, as shown in the dashed

red line near 30◦N in Figure 3.13. From a Lagrangian perspective of isentropes, poleward

moving air follows the red line of rising warm air (the slope of which depends on whether θ

or θe is used) and flows, on average, directly out of CO2 enriched air near the surface into

the free troposhere such that CO2 enriched air is carried poleward. This parcel following

flows results in positive covariance of CO2 and mass flux and net eddy CO2 transport is

poleward, as shown in the sold red line in Figure 3.13.
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3.6 Seasonal Variations

Meridional transport strongly mediates the seasonal cycle of CO2 in mid-latitudes

and amplifies it in high latitudes, accounting for most of the observed seasonality at sites

like Barrow, Alaska and Alert, Canada [Fung et al., 1983]. Comparison of satellite observed

vegetation with modeled transport implies that atmospheric mixing produces signals at high

latitudes where vegetation is sparse [Fung et al., 1987]. To convey the influence of eddy

and mean transport on seasonality in the Arctic from a θe perspective, the seasonal cycle of

the atmospheric CO2 tendency (tendencies in ppm month−1 are approximated by dividing

Equation 1 through by zonal and time averaged surface pressure) binned by latitude into

the Arctic and mid-latitudes is plotted as a function of eddy transport, mean transport and

surface flux tendencies (Figure 3.16).

CO2 seasonality is stronger in the Arctic despite weak surface fluxes (Figure 3.16A).

This is driven strongly by synoptic eddies and therefore moist synoptic storms. Polar

seasonality is strongly opposed by the mean meridional circulation, with net equatorward

transport (at all northern latitudes) from September-June and poleward transport during

summer. The same transport processes responsible for seasonality in the Arctic also strongly

damp the seasonal cycle in mid-latitudes to about 50% of the seasonality implied by NEE,

with eddy transport of similar magnitude to fossil fuel emissions during summer and fall

(Figure 3.16B). Eddy transport tends to lead mean transport by 2-4 weeks during summer

in the Arctic.

3.7 Conceptual Diagram

Results of Part 1 of this study are summarized in Figure 3.17. Synchrony of baroclinic

waves with terrestrial ecosystem metabolism governs “meridional sloshing” of CO2 between

middle and high latitudes, which modulates seasonality at mid-latitudes and amplifies sea-

sonality at high latitudes. Poleward flow of warm moist air, high in CO2 relative to high

latitudes, is swept along moist isentropic surfaces along the east side of baroclinic waves.
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Figure 3.16: Column integrated seasonal CO2 budget tendencies (ppm month−1) on θe
binned into (A) high latitudes and (B) mid-latitudes. Transport by transient and stationary
eddies is plotted in blue, mean meridional transport in red, the total CO2 tendency in black,
and the total surface flux of carbon from land, ocean, and fossil fuels in green. The fossil
fuel tendency is plotted as a dashed greed line. The sum of individual tendencies (red, blue
and green lines) is equal to the total tendency (black line). Error bars represent the root
mean squared error for the two years of averaging used.
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Figure 3.17: Illustration of important CO2 transport mechanisms associated with a baro-
clinic wave.

As this air is forced up over the polar front along the mid-latitude stormtrack, high CO2

air is dumped into the polar vortex and a huge comma-shaped cloud forms. Poleward flow

is compensated by equatorward flow of cold dry air, low in CO2 relative to low latitudes.

This air descends from high polar altitudes into lower latitudes from the vortex along the

surface in the western trough portion of the baroclinic wave. Mean polar flow, not depicted

graphically in this study, opposes transport by synoptic eddies with net equatorward trans-

port of CO2 during winter. The directions of eddy and mean transport are reversed during

boreal summer as baroclinic waves weaken and the terrestrial biosphere draws CO2 out of

the atmosphere.
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3.8 Discussion and Conclusions from Part 1

Synoptic weather systems transport a large amount of CO2 north and south in mid-

latitudes, up to 1 PgC month−1 during winter when baroclinic waves ramp up. As a

result, seasonality is strongly damped in mid-latitudes and amplified in the Arctic. To

put this in perspective, synoptic eddies transport more CO2 out of mid-latitudes than

is emitted by fossil fuels. The total amount of CO2 transported by synoptic eddies is

most likely sensitive to model choice and should increase as models become more skilled

at representing important eddy processes such as frontal circulation, moist convection and

precipitation. Because eddies mediate seasonality in northern latitudes, it is critical that

inversion scientists (modelers and observationalists) consider seasonal meridional transport,

and the underlying mechanisms, carefully.

Sensitivity of eddy transport to factors such as storm track position, seasonal ten-

dencies in CO2 mixing ratio and the pattern of seasonal change in surface CO2 flux over

the globe poses a challenging task for inversion modelers. Additionally, interpretation of

synoptic variations in continental records requires accurate simulation of frontal weather

systems [Geels et al., 2004; Wang et al., 2007; Parazoo et al., 2008] and moist conveyors.

As discussed in Chapter 3 and by Corbin et al. [2006], moist processes associated with

synoptic weather systems hide much of the dynamics from satellites, and likely from other

observing systems [e.g., aircraft flask samples, Stephens et al., 2007]. Additionally, warm

conveyors transport CO2 and other trace gases into the polar vortex where they are hid-

den during polar winter. Continuous in-situ records can supplement airborne and remotely

observed measurements during inclement weather, but only at a few locations. This fair-

weather bias in measurements puts stringent requirements on models of moist transport.

We therefore recommend that inversion modelers pay special attention to modeling of wet

synoptic storms in addition to in-situ and satellite observations, with particular attention

given to factors such as grid spacing (e.g., frontal circulations better resolved with finer

grid spacing), representation of moist convection along fronts and within the warm sector
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of cyclones, and assimilation of observations of moisture.

An additional complication arises in dry parts of the mid-latitude circulation where

high-pressure systems transport CO2 in different directions within an atmospheric column

due to convergence aloft and divergence near the surface. Transport aloft in mid-latitudes,

for example, is driven in large part by deep convection in tropical latitudes, which is typ-

ically parameterized and therefore poorly represented in global models. That being said,

observations are ideally suited for constraining the dry portion of the atmosphere. For

example, satellite measurements help constrain flow in the column, in-situ measurements

constrain flow at the surface, and periodic aircraft measurements from field campaigns such

as the HIAPER Pole-to-Pole Observations Experiment (HIPPO) constrain flow throughout

the lower and free troposphere. Without observations such as these, there is otherwise

over-reliance on models to distinguish between large and opposing directions of transport.

Regional inversion modelers will be one of the primary victims of the vast amounts

of seasonal transport by synoptic storms. It is important to correctly represent large-scale

meridional CO2 gradients flowing over regional domains because interaction with synoptic

waves generates a source of variability that may confound flux attribution [Keppel-Aleks

et al., 2010]. It is not surprising, given the unobserved and unresolved nature of moist

synoptic transport, that Schuh et al. [2010] find that the annual sink over N. A. varies by

∼30% when lateral boundary conditions are prescribed from two different global transport

models. Because of large meridional transport by synoptic eddies, regional inversions should

carefully account for meridional advection at north and south borders when prescribing

lateral boundary conditions.

Furthermore, it is possible that interannual variability in eddy (or mean) transport,

in response for example to teleconnection patterns such as the North Atlantic Oscillation

[e.g., Hurrell, 1995], has contributed to trends in CO2 seasonality in the Arctic [e.g., Keeling

et al., 1996; Randerson et al., 1997]. Keeling et al. [1996] reported that the seasonal cycle

of CO2 increased in amplitude by 40% in the Arctic from the early 1960’s to the mid-
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90’s. While the study also provided evidence that increased seasonality is linked to global

warming and increased uptake by plants, a subsequent investigation by Randerson et al.

[1997] showed that such large trends in uptake couldn’t be explained by CO2 fertilization

alone, and that other processes must also contribute. Given the large year-to-year changes

in the amount of mass that sloshes back and forth between middle and polar latitudes,

and the possible link between global warming, NAO index, and winter storm strength, it

is reasonable to expect that trends in seasonal exchange of CO2 between middle and polar

latitudes may contribute to trends in seasonal CO2 in the Arctic. While such analysis is

beyond the scope of this study, it is an excellent topic for future studies.

Finally, it is worth exploring in more detail to what degree synoptic transport into the

polar vortex influences equatorward moving air at a later point in time. Previous studies

show that point emissions of tracer can scatter widely north, south, and across ocean basins

through interaction with baroclinic waves [e.g., Cooper et al., 2001, 2004]. It is common,

for example, for baroclinic waves to advect polluted Asian air into the Arctic. A portion of

this air is advected back south into N. A. with the same system, but the rest mixes in the

polar vortex. Counter to intuition CO2 anomalies in air arriving at mid-latitude sites from

the north may actually reflect fluxes that occurred earlier to the south, and mixing with

the polar vortex scrambles any coherent link between the longitudinal origin of poleward

and equatorward moving air.



Chapter 4

UNCERTAINTY IN MOIST SYNOPTIC TRANSPORT OF CO2

Part 1 of this study, presented in Chapter 3, showed that CO2 transport by moist

synoptic storms in northern mid-latitudes is significant, intimately tied to frontal and moist

processes and therefore poorly resolved and poorly represented in most global transport

models, and systematically unobserved by satellites. Because a significant portion of CO2

transport is unobserved, there is a lot of pressure on models of moist transport to represent

synoptic transport processes with high fidelity. Part 2 of this study seeks a better under-

standing of how well different transport products represent moist synoptic transport. Of

particular interest to me is sensitivity of net meridional transport by mid-latitude storms to

grid spacing and fine-scale vertical mixing. It is entirely possible that transport differences

between models exist but are mostly random and largely cancel out over long enough time

scales. It is just as likely, however, that systematic transport differences exist, in which case

biased transport errors are more prone to be aliased into inverse estimates of CO2 flux.

In order to quantify uncertainty associated with resolved and unresolved synoptic

processes, Part 2 includes analysis of meridional transport of seasonally varying CO2 us-

ing a global transport model, identical surface fluxes and initial conditions, and transport

driven by four reanalysis products from GEOS-DAS (described in Chapter 2.3). Using a

common transport model (PCTM), transport differences arise strictly from differences in

meteorological forcing, unlike in some previous studies such as TransCom which also dif-

fer in transport algorithms. With confirmation in Chapter 3 of the importance of moist

synoptic processes for carbon transport, transport is diagnosed strictly along θe.
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4.1 Introduction

Model projections of climate change depend critically on accurate predictions of car-

bon sources and sinks [Friedlingstein et al., 2006; IPCC, 2007]. Inverse methods com-

bine information from atmospheric models and CO2 mixing ratio measurements to provide

process-based and observed constraint to source and sink estimates. This “top-down” ap-

proach is useful at global scales but mostly unsuccessful to date at regional scales where

information about underlying processes is contained [Baker et al., 2006]. While in-situ

and spaced-based measurement constraints have improved in quantity and quality in re-

cent years, strong sensitivity to transport error continues to be a key limitation at regional

scales [Gurney et al., 2004; Houweling et al., 2010]. For example, seasonal and diurnal co-

variance between ecosystem metabolism and fine-scale vertical transport in the atmosphere

is a strong determinant of vertical structure in CO2 (the CO2 “rectifier effect,” Denning et

al. [1995, 1996, 1999]). Numerical treatment of subgrid-scale vertical mixing is a leading

source of uncertainty in CO2 inverse models [Denning et al., 1999; Yi et al., 2004; Helliker

et al., 2004; Baker et al., 2005; Yang et al., 2007; Stephens et al., 2007]. As discussed in

Chapter 3, transport by baroclinic waves is another process that controls the distribution

of CO2 on seasonal time scales.

The global CO2 observing system has grown to include continuous records at conti-

nental locations close to terrestrial sources. These records allow quantitative flux estimation

at finer spatial scales than previously possible [e.g., Law et al., 2003; Peylin et al., 2005;

Zupanski et al., 2007; Lauvaux et al., 2008; Schuh et al., 2009], but feature much greater

variance at synoptic scales. Interpretations of these variations require accurate simulation of

structure, timing, and vertical motions associated with synoptic waves and frontal weather

systems [Geels et al., 2004; Hurwitz et al., 2004; Wang et al., 2007; Parazoo et al., 2008].

Tracer transport by baroclinic waves is associated with large- and small-scale fea-

tures. Representation of large-scale features (∼1000 km’s) in numerical models, such as

the position and timing of a baroclinic wave, is strongly dependent on grid spacing, with



97

finer grid spacing improving the chances of representing features within a wave. Model

inter-comparison studies show that simulations at higher spatial resolution produce better

match with observed synoptic variations at northern mid-latitudes sites [Geels et al., 2007;

Patra et al., 2008; Ahmadov et al., 2009].

Unfortunately, certain features of synoptic waves occur at scales smaller than most

global inverse models (1◦ globally or coarser, ∼100 km) can resolve. Frontal ascent of tracer,

for example, is typically confined to a 60 km wide region [Donnel et al., 2001], and is there-

fore unresolved down to grid spacing of 10 km or less. Additionally, transport by moist

convection and turbulent mixing typically occur at scales smaller (< 10 km) than most at-

mospheric models can resolve. These processes are solved instead through parameterization,

which is highly variable between models, not as easily constrained in meteorological reanal-

ysis as resolvable flows, and therefore highly uncertain. It is unclear what role slantwise

vertical transport by synoptic storms plays in top-down CO2 flux estimates, but because

vertical mixing, surface CO2 flux intensity, and CO2 spatial gradients are tightly liked in in-

verse calculations, errors in vertical mixing translate into errors in vertical CO2 distribution

and thus CO2 flux estimates [Stephens et al., 2007]. For example, models in TransCom3

that trap more CO2 near the surface due to weak vertical mixing tend to overestimate the

strength of the NH terrestrial sink.

In the era of remotely-sensed observations of trace gas from satellites, an additional

complication arises because the strongest horizontal gradients in CO2 occur along frontal

boundaries that are typically hidden from orbital sensors by clouds [Corbin et al., 2006],

and much of the seasonality at northern latitudes is determined by moist conveyors which

will hide CO2 transport from satellites [Parazoo et al., 2011]. Corbin et al. [2008] analyzed

simulated column-mean CO2 using a clear-sky sampling regime along hypothetical satellite

orbits and found that systematic sampling errors of up to 1.5 ppm in the seasonal mean

were caused by cloud masking of frontal CO2 gradients. Covariance of synoptic transport

with surface CO2 flux is likely to cause errors in top-down flux estimates if not represented
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correctly in transport models. Since a portion of the synoptic signal is unobserved, it is

important to understand uncertainty associated with synoptic processes.

In order to quantify uncertainty associated with resolved and unresolved synoptic

processes, we analyze meridional transport of seasonally varying CO2 using a global trans-

port model, identical surface fluxes, and transport driven by four reanalysis products from

GEOS-DAS. This experiment is aimed at isolating transport as the sole cause of differences

between simulations. Synoptic scale eddy CO2 transport is diagnosed along θe following

Chapters 2 and 3. Reanalysis products were described in detail in Chapter 2.3. Discussion

of transport uncertainty will be the primary focus of the first half of Section 3.2. Modeled

synoptic scale variations of CO2 are compared to observed variations at continental and

remote sites at the beginning of Section 3.2 so that model fidelity may be evaluated. This

research also seeks to identify key differences between models that may be responsible for

uncertainties in eddy transport. Possible explanations for transport uncertainty are dis-

cussed in the latter half of Section 3.2. Discussion and concluding remarks are provided at

the end of this chapter.

While the major focus of Part 2 is quantification of uncertainties in moist eddy trans-

port and identification of possible causes of uncertainty, comparison to observations are

made in order to (1) instill some sense of realism in the simulations and (2) provide indi-

cation that model uncertainty in eddy transport is a result of improved representation and

resolution of physical processes as models move towards higher fidelity. Model comparisons

are made to well-calibrated in-situ observations of CO2o from northern mid-latitude surface

and tall tower sites at hourly resolution. The 12 sites chosen for this study are described in

more detail in Parazoo et al. [2008]. Lag-correlations are used as a measure of correlation

and timing (or phase) of synoptic variations, with seasonal and diurnal variations removed

from time series of modeled and observed CO2 using a butterworth filter.
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4.2 Comparison to Observations

Modeled synoptic variations are fairly well correlated with observations at zero time

lag with an average correlation among all sites and models of r=0.496 (see Figure 4.1). The

strongest correlations occur at remote sites (ZEP, PAL; r=0.66) and coastal sites (MHD,

SBL; r=0.64). Weaker correlations occur over continental terrestrial sites (e.g., LEF, CDL,

and WPL), which tend to be more sensitive to surface fluxes. Overall correlations vary

only slightly between models, with r = 0.476 for GEOS4-2.5x2, r = 0.482 for GEOS4-

1.25x1, r = 0.509 for GEOS5-1.25x1, and r = 0.517 for GEOS5-0.67x0.5, although model

dependence of correlation is probably better interpreted on a site-to-site basis. Relative to

a select set of continuous observations, day-to-day variability is generally more realistic in

GEOS5-0.67x0.5.

These plots provide little indication of the amplitude of day-to-day variability at these

locations. To demonstrate amplitude between models relative to observations, modeled and

observed surface CO2 mixing ratios are plotted for a 30-day period in January 2005 at

LEF in Figure 4.2. While the timing and structure of synoptic features is consistent be-

tween models and observations, the amplitudes of GEOS5-0.67x0.5 and GEOS5-1.25x1 are

significantly overestimated relative to observations and GEOS4-2.5x2 and GEOS4-1.25x1.

Although more extensive analysis of model spread in amplitude and correlation relative to

observations would be useful, to avoid a lengthy discussion I will summarize by mention-

ing that these strong differences in amplitude occur at most of the other mid-latitude and

boreal sites during winter, especially at higher latitudes, but that model spread in ampli-

tude is significantly weaker during summer. Whether these model differences in correlation

and amplitude at synoptic timescales can be attributed to differences in eddy and/or mean

transport is the subject of the remainder of this paper.
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Figure 4.1: Lag Correlations between model and observations at mid-latitude sites in North
America and Europe. The four line styles refers to the model used in the correlation,
where GEOS5-0.67x0.5 is solid, GEOS5-1.25x1 as dashed, GEOS4-1.25x1 is dotted, and
GEOS4-2.5x2 is dash-dotted. These same line styles are used in the remaining figures in
the Chapter.



101

Figure 4.2: Modeled and observed surface CO2 mixing ratio fro January 1-30, 2005 at a site
in northern Wisconsin (LEF). Observations are plotted at 76 m above the surface in black.
Line styles for models are the same as in Figure 4.1

4.3 Estimates of Transport Uncertainty

Total column transport in the annual mean is approximately conserved between mod-

els (a small exception exists at low latitudes), with net northward transport north of 50◦N

and net southward transport south of 50◦N (Figure 4.3A). Eddy transport is poleward in

both hemispheres and opposed by mean transport, which is strongly southward in northern

latitudes in the annual mean. Eddy and mean transport peak in northern mid-latitudes,

consistent with strong terrestrial breathing of the planet and industrial emissions, and dur-

ing boreal winter when baroclinic waves are most active. Mean transport in the column

is a small residual of cancellation between strong poleward transport aloft and equator-

ward transport near the surface; eddy transport is weak but poleward through most of the
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Figure 4.3: Total column integrated CO2 transport (black) partitioned into transport by
the mean circulation (blue) and synoptic eddies (baroclinic + stationary waves, red) in the
annual mean (A) and during boreal winter (Jan-Feb, B) and summer (Jun-Jul-Aug, C).
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troposphere [Parazoo et al., 2011].

There are important differences in model partitioning of meridional transport into

eddy and mean components. Eddy transport differences between GEOS4 and GEOS5 are

as large as 0.1 PgC month−1 from 40-60◦N in the annual mean (Figure 4.3A), representing an

error of 15-20% relative to peak transport. Seasonal differences are sometimes twice as large;

for example, differences up to 0.2 PgC month−1 from 40-60◦N occur during boreal winter

(Figure 4.3B) and 0.2 PgC month−1 from 35-40◦N during boreal summer (Figure 4.3C).

Eddy transport is weaker in GEOS4 than GEOS5 and weakest in GEOS4-2.5x2. Eddy

transport differences between the two GEOS4 resolutions and between the two GEOS5

resolutions are generally small in mid-latitudes. To conserve total meridional transport in

the column, increased northward eddy transport (for example in GEOS5) is compensated

by increased southward mean transport at the same latitude.

The contribution of eddies to seasonal tendencies of CO2 in the Arctic (defined as 70-

90◦N, tendencies have units of ppm month−1) is shown in Figure 4.4A. Since eddy tendencies

are calculated for the polar cap, with meridional exchange occurring with mid-latitudes at

70◦N, positive tendencies represent net eddy transport from mid-latitudes into the Arctic

(vice versa for negative tendencies). Model differences of∼1 ppm month−1 occur throughout

the year, with all models contributing positively from September-May and negatively from

June-August. Eddy exchange between middle and polar latitudes is strongest in GEOS5-

0.67x0.5 during all months, and therefore contributes most strongly to seasonality in the

Arctic. The weakest eddy exchange occurs in GEOS4 during winter and in GEOS4-1.25x1

and GEOS5-1.25x1 during summer.

Model differences are smaller in magnitude (∼0.5 ppm month−1) in mid-latitudes (30-

70◦N) but account for a larger percentage of total eddy transport (Figure 4.4B). Unlike the

Arctic, where net meridional exchange occurs only at the southern boundary (i.e., 70◦N),

mid-latitude exchange occurs at two boundaries (30◦N and 70◦N). Caution must therefore

be taken when interpreting the cause of mid-latitude tendencies; positive tendencies, for
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Figure 4.4: Column integrated seasonal CO2 budget tendencies (ppm month−1) for eddies
binned into high latitudes (70-90◦N, A) and mid-laitudes (30-70◦N, B). Tendencies due to
total surface flux (green solid) and fossil fuel emissions (greed dashed) are shown in (B).

example, can result from equatorward transport out of the Arctic and/or poleward transport

out of mid-latitudes. As in the Arctic, eddy transport is strongest in GEOS4-0.67x0.5,

with peak positive tendencies in July of ∼1.75 ppm month−1 and peak negative tendencies

during November of ∼1.1 ppm month−1. In all model cases, eddy transport is weakest from

January to April, with tendencies of ∼0.5 ppm month−1 in GEOS5-0.67x0.5 but zero net

tendency in GEOS4-2.5x2. Put another way, coarse grid models (such as GEOS4-2.5x2)

suggest zero net eddy transport out of mid-latitudes (poleward transport at 30◦N equals

poleward transport at 70◦N) during the first third of the year while fine grid models (such as

GEOS5-0.67x0.5) suggest up to 0.5 ppm month−1 net eddy transport out of mid-latitudes.

Model dependence of transport out of mid-latitudes by differential eddy transport at

the north and south “borders” is likely to be misinterpreted by regional inverse models.
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It is even worse considering that the tendency due to eddies is sometimes twice the fossil

fuel signal (0.9 ppm month−1, dashed green line in Figure 4.4B). For example, transport

by GEOS5-0.67x0.5 is nearly 1.75 ppm month−1 during July alone. The large tendency

due to eddies puts a lot of pressure on models, which unfortunately experience

eddy transport errors of 0.5 ppm month−1, or half the tendency due to fossil

fuels, for much of the year .

Synoptic eddies are composed of transient and stationary waves. The primary differ-

ence is that stationary waves are anchored geographically by season while transient waves

arise from baroclinic instability within stationary waves. Because baroclinic instability in

transient waves leads to fine scale circulations which may be unresolved and moist processes

(such as convection) which must often be parameterized, transport by transient waves is

more uncertain than stationary waves. To determine which is more uncertain, annual and

seasonal mean transport by each component is plotted in Figure 4.5.

Transient and stationary waves transport CO2 poleward in the annual mean (Fig-

ure 4.5A), with peak transport by transient waves near 40◦N and stationary waves near

55◦N. Transient waves dominate the total eddy signal from 30-60◦N in the annual mean

(Figure 4.5A), with peak transport during winter (Figure 4.5B). During summer (Fig-

ure 4.5C) there is convergence of CO2 near 50◦N due to poleward transport from the south

and equatorward transport from the north. This convergence is coincident with peak bi-

ological uptake (see Figure 3.5B). Transport by transient waves from 40-60◦N increases

by ∼0.08 PgC month−1 from GEOS4-2.5x2 to GEOS5-0.67x0.5 in the annual mean, with

differences between GEOS4 models and GEOS5 models ∼0.02 and ∼0.04 PgC month−1,

respectively. Transport differences are as large as ∼0.15 PgC month−1 from 40-60◦N during

winter and ∼0.11 PgC month−1 from 60-70◦N during summer.

Transport by stationary waves near 50◦N increases by ∼0.05 PgC month−1 from

GEOS4-2.5x2 to GEOS5-0.67x0.5 in the annual mean (Figure 4.5A), with differences be-

tween GEOS4 models and GEOS5 models trivially small. Transport differences are as large
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Figure 4.5: CO2 transport by stationary waves (cyan) and baroclinic waves (magenta) along
θe in the annual mean (A) and during boreal winter (B) and boreal summer (C).

as ∼0.15 PgC month−1 from 50-70◦N during winter and ∼0.11 PgC month−1 near 30◦N

during summer (Figure 4.5C). Counter to intuition, stationary waves experience a
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similar range of uncertainty as transient waves. Although differences in total eddy

transport between the GEOS5 models are small in the annual mean (Figure 4.3A), assess-

ment of the transient and stationary wave components reveals that non-trivial differences

exist in transient waves near peak amplitude ( 40◦N) that largely cancel when added to

stationary waves.

Eddy transport is stronger in the GEOS5 models, but comparison of horizontal struc-

ture reveals that geographic patterns and magnitudes of transport are very similar between

models (Figure 4.6). In all models, patterns of eddy transport emerge over similar spa-

tial scales (1000’s km’s) and regions. Comparison to a climatology of WCBs in Figure 3 of

Eckhardt et al. [2004] suggests that dominant patterns of poleward eddy transport are coin-

cident with climatologically favorable regions for WCBs. Like WCBs, CO2 transport tends

to follow a northward and eastward track originating in subtropical latitudes, peaking in

mid-latitudes, and terminating in the Arctic. The most favorable regions tend to originate

over land (e.g., southern port of the United States and Tropical Asia) and terminate over

the eastern portion of the adjacent ocean (e.g., Pacific and Atlantic Oceans, respectively).

The major difference in models is largely a result of differing magnitudes of transport in

favorable synoptic regions, for example over Europe (GEOS5 models dominate) and boreal

Canada (GEOS5-1.25x1 dominates).

4.4 Causes of Transport Uncertainty

Comparison of model characteristics helps explain uncertainty in eddy transport. Be-

cause GEOS4 models differ only in horizontal grid spacing, the difference between GEOS4-

2.5x2 and GEOS4-1.25x1, although small, can be explained purely due to regridding of

GEOS4-1.25x1 to the coarser grid of GEOS4-2.5x2. Differences in transport between

GEOS5 models can also be explained through differences in grid spacing, although data

assimilation procedures (meteorology is reanalyzed in GEOS5-1.25x1 but only analyzed in

GEOS5-0.67x0.5) and model updates between 5.1.0 and 5.2.0 (high latitude diurnal cycle)
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Figure 4.6: Spatial structure of annual mean column integrated CO2 transport by synoptic
eddies along θe for GEOS4-2.5x2 (A), GEOS4-1.25x1 (B), GEOS5-1.25x1 (C) and GEOS5-
0.67x0.5 (D). The colorbar is shown in units of PgC month−1.

may also contribute. Transport differences between GEOS4-1.25x1 and GEOS5-1.25x1 are

not as straightforward because several major differences between GEOS4 and GEOS5 exist.

First, although grid spacing is the same in GEOS4-1.25x1 and GEOS5-1.25x1, the native

grid of GEOS5-1.25x1 is 0.67◦x0.5◦ (i.e., GEOS5-1.25x1 is run at 0.67◦x0.5◦ with transport
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fields saved at reduced resolution). Second, there are differences in cumulus convection and

cloud mixing parameterizations. Third, vertical resolution in the troposphere is nearly two

times that of GEOS5. Fourth, the number and type of data assimilated per cycle is not

consistent between models. Finally, data assimilation schemes are not consistent.

Model differences due to data assimilation are not possible to test in this study

because transport simulations are run offline from parent models. Differences due to grid

spacing, however, are more straightforward to test. An example of the effect of grid spacing

is shown in Figure 4.7. As discussed in the Introduction, large-scale features associated with

synoptic waves and “CO2 weather” show up in both fine and coarse grid models. GEOS5-

0.67x0.5 (Figure 4.7A), however, does a much better job resolving finer scale features and

magnitudes. The most obvious difference between models in this example is in Western

Siberia where wave-like features associated with stronger horizontal gradients in column

CO2 occur in GEOS5-0.67x0.5, but are strongly smoothed in GEOS4-2.5x2. A similar

effect is also seen in the N. Atlantic. Additionally, CO2 tends to build up more in the

column in the Amazon in GEOS5-0.67x0.5.

Differences in vertical mixing due to cumulus convection and turbulent mixing are

also straightforward to explore. Vertical mass fluxes are plotted as a function of η and

averaged in northern mid-latitudes (30-70◦N) in Figure 4.8. Turbulent mixing (Figure 4.8A)

and cumulus convection (Figure 4.8B) in GEOS5 are consistently weaker than GEOS4

throughout the column in northern mid-latitudes, with cumulus mass flux nearly twice

as weak. There are also smaller differences in vertical mixing between GEOS5-1.25x1 and

GEOS5-0.67x0.5. Weak vertical mixing in mid-latitudes in GEOS5 is consistent with results

published by Ott et al. [2009], who found that single column model application of RAS

significantly underestimates convective mass flux relative to CRMs for several case studies

of mid-latitude convective storms, resulting in weaker vertical transport of trace gases. The

question is whether reduced vertical mixing in GEOS5 is a cause for enhanced meridional

CO2 transport from middle to polar latitudes.
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Figure 4.7: Column CO2 snapshots on 10 January 2005 for GEOS5-0.67x0.5 (a) and GEOS4-
2.5x2 (b)

Figure 4.9 shows model differences in annual mean CO2 along η in northern mid-

latitudes. The vertical gradient of CO2 in the PBL from the surface to about η = 0.7

is stronger in GEOS5, where GEOS5 exceeds GEOS4 near the surface by 0.5-1.0 ppm

with model convergence of CO2 in the free troposphere. Weak vertical mixing in GEOS5
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Figure 4.8: Zonal-annual mean values for vertical diffusion (A) and cumulus mass flux
(B) binned into mid-latitudes (30-70◦N) and plotted as a function of the terrain following
coordinate eta (η) for each reanalysis product. These values are taken directly from the
driver files used to force vertical mixing in PCTM. GEOS4 lines are identical and lie directly
over one another.

has likely trapped CO2 in the PBL and enhanced CO2 variability near the surface. This

increased variability, in turn, enhances the likelihood of strong temporal and zonal per-

turbation to CO2, hence driving increased eddy transport out of the PBL. Figure 4.10

shows that the difference in eddy transport between GEOS4-1.25x1 and GEOS5-1.25x1

lies primarily at lower levels, near θe = 270 K, indication that eddy transport is stronger

in GEOS5-1.25x1 near the surface. These results suggest that weak vertical trans-

port by rapid convective events in GEOS5 enhances the probability of baroclinic

eddies transporting CO2 upward and poleward out of the mid-latitude PBL.

Differences in poleward flow of warm moist air out of the subtropics may also con-

tribute to enhanced eddy CO2 transport in GEOS5. Moist ascent in mid-latitudes is implied

in arguments by Pauluis et al. [2008, 2009] that there is a large poleward transport of warm
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Figure 4.9: Zonal-annual mean CO2 mixing ratio (ppm) binned into mid-latitudes (30-70◦N)
and plotted as a function of η.

moist air out of the subtropics into mid-latitudes where air parcels become convectively

unstable and ultimately saturated through poleward and upward flow through stormtracks.

Figure 4.11 shows mass transport along three important airstreams of the general circula-
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Figure 4.10: Eddy CO2 transport by GEOS5-1.25x1 (A) and GEO4-1.25x1 (B). Difference
in eddy transport between models are shown in (C).

tion: low-level flow of warm moist air (red line), low-level flow of cold dry air (blue line),

and upper-level flow of warm dry air (black line). These airstreams are determined using
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the joint distribution of mass transport of dry and moist isentropes as described in Eqns.

5a-5c in Pauluis et al. [2009] and add to zero at every latitude.

Figure 4.11: Mass transport of low-level cold dry air (blue line), low-level warm moist air
(red line), and upper-level warm dry air (black line) as define in Eqs. (5a)-(5c) of Pauluis
et al. [2009].

The most important result in Figure 4.11 is the model difference in low-level poleward

flow of warm moist air near 40◦N. This airstream supplies much of the energy necessary

for moist slantwise ascent within baroclinic eddies. This analysis suggests that GEOS5

transports more mass poleward along moist airstreams than GEOS4, and thus the moist

circulation is stronger in GEOS5. Strong poleward flow of warm moist air is compensated

by strong equatorward flow of cold dry air. Since upward and poleward eddy transport

of CO2 is intimately tied to the moist circulation [e.g., Parazoo et al., 2011], a stronger

moist circulation in GEOS5 (a likely result of new data assimilation techniques, number

and type of data assimilated, and higher resolution parent grid) helps explain enhanced
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eddy transport of CO2. Similarly, the stronger moist circulation in GEOS5-1.25x1 relative

to GEOS5-0.67x0.5 (Figure 4.11) given the same mean vertical CO2 profile (Figure 4.9)

may help explain differences in transport by stationary and transient waves within GEOS5,

with the difference in moist circulation explained by reanalysis of more observations in

GEOS5-1.25x1 compared to GEOS5-0.67x0.5.

4.5 Discussion and Conclusions from Part 2

Eddy CO2 transport from a global tracer model is analyzed using identical surface

fluxes and transport driven by four reanalysis products. Analysis on θe reveals much un-

certainty at synoptic scales. Differences in eddy transport at northern mid-latitudes reach

0.1 PgC month−1 in the annual mean and up to 0.2 PgC month−1 during boreal winter

and summer. The weakest overall eddy transport occurs in the coarsest resolution model

GEOS4-2.5x2, which reduces transport (relative to GEOS5-0.67x0.5) out of mid-latitudes

by as much as 0.5 ppm month−1 and consequently reduces the eddy component of polar

seasonality by as much as 1 ppm month−1. The tendency for transport by moist synoptic

storms to decrease as grid spacing and fine-scale vertical mixing increase suggests that sys-

tematic differences between analysis products may result in non-random tracer transport

biases.

Additionally, in the context of fossil fuel emissions these transport biases are sig-

nificant. Fossil fuels are prescribed using the dataset described by Andres et al. [1996],

which has a total global emission of 6.17 PgC year−1, or ∼0.5 PgC month−1. With this

dataset as a reference, an annual mean eddy transport bias of 0.1 PgC month−1 represents

20% of the global fossil fuel inventory and up to 40% when transport biases reach 0.2 PgC

month−1 during winter and summer. The problem is even worse relative to fossil fuel in-

ventories in northern mid-latitudes. This uncertainty in eddy transport puts even more

pressure on regional inversions to carefully account for meridional advection at north and

south boundaries when prescribing lateral boundary conditions.
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In the same way that systematic model underestimates of nocturnal boundary layer

mixing degrade the utility of nocturnal continuous measurements of CO2 for inverse flux

estimates, biases in synoptic transport of CO2 might degrade the utility of continuous or

satellite measurements of CO2 along fronts. Comparison to continuous measurements, for

example, has shown that overall models in this study correctly simulate the phase and pat-

tern of synoptic variability, but that the GEOS5 models in particular have the tendency

during winter to overestimate the amplitude of synoptic variability. This is no different

from nocturnal mixing; ability to simulate timing of mixing, inability to simulate strength.

The likely implication for inverse flux estimation, assuming that continuous and/or satellite

measurements sample enough points along synoptic weather systems to resolve amplitude

and structure of horizontal gradients, is that the inversion will determine the correct distri-

bution of sources and sinks but with the wrong magnitude.

Is is more likely, as discussed in Chapter 3, that CO2 variations associated with

synoptic moist dynamics will be mostly unobserved by satellites. CO2 transport at synoptic

scales is therefore systematically unresolved and unobserved. Given the importance of

transport by synoptic weather systems underneath clouds [Parazoo et al., 2008] and the

resulting temporal sampling bias in CO2 mixing ratio distributions [Corbin et al., 2009],

significant flux estimation errors are likely to be incurred due solely to unobserved transport,

even if transport were perfect. It would be interesting to see how excluding column CO2

data from moist synoptic storm systems using some kind of cloud screening technique might

bias inverted surface fluxes given OSSEs with biased and unbiased transport models.

It is important to keep in mind that total meridional transport in northern mid-

latitudes is the same in all simulations and therefore reduced transport of CO2 by eddies in

GEOS4 must be compensated for by reduced transport by mean circulations. This means

transport by the mean circulation experiences the same total bias between GEOS4 and

GEOS5 as transport by baroclinic waves, albeit for different reasons. Unlike transport

by moist baroclinic storms, measurements of transport by the mean circulation do not
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experience fair weather bias, and therefore uncertainty in mean transport is alleviated to

some degree by continuous and flask observations at the surface, satellite measurements of

column CO2, and vertical profiling by aircraft. Because of the large uncertainty in mean

transport and the huge opposing flows of CO2 throughout the column discussed in Chapter

3, these fair weather measurements are crucial for constraining flow through the dry part

of the atmosphere.

A question raised by Pauluis et al. [2009] is whether midlatitude ascent occurs pri-

marily through rapid convective events such as thunderstorms or slower slantwise motions

in baroclinic eddies. Eddy decomposition on θe strongly suggests that slantwise ascent plays

a critical role in overall midlatitude ascent. Furthermore, the moist circulation is stronger

in GEOS5 despite weaker cumulus mass flux. This raises questions as to what combination

of factors sets the moist circulation in GEOS5 apart from that of GEOS4. Data assimila-

tion techniques almost certainly play a role but it is likely finer grid spacing (horizontally

and vertically) in GEOS5 is able to better resolve cyclonic circulations, frontal structure,

and slantwise ascent along moist conveyors within baroclinic eddies. Eddy transport is only

weakly sensitive to winds that have been regridded to coarse resolution (e.g., GEOS4-1.25x1

to GEOS4-2.5x2) or sampled from finer grids (e.g., grid points in GEOS5-1.25x1 are sam-

pled from GEOS5-0.67x0.5). It is therefore more important to run models and generate

reanalysis at the finest possible grid spacing in order to resolve fine-scale synoptic features.

Future studies should examine sensitivity of eddy transport to grid spacing, with a fixed

vertical mixing scheme, by running GCMs at multiple grid spacing from 250 km down to

50 km or finer if possible.

Eddy decomposition is a valuable tool for assessing tracer models via the statistics

of eddy CO2 transport along the moist synoptic pathway. This technique could almost

certainly be applied to other tracers to assess forward or inverse models. It could also be

used to investigate the validity of moist convection in mid-latitudes in global models relative

to observations and/or cloud resolving models. Even at 50 km grid spacing convective



118

scales are far from resolved. Ott et al. [2009] show that vertical mixing in GEOS5 is weak

compared to a cloud-resolving model, but that parameters within the GEOS5 convection

scheme could be optimized to improve vertical transport by convective storms. We have

seen that weak vertical mixing in GEOS5 traps CO2 in the PBL, where it accumulates over

time. Eventually moist processes within baroclinic waves, unobserved by satellites, sweeps

the CO2 upward and poleward. Future studies should examine sensitivity of eddy transport

within a global mesoscale model such as GEOS5 to vertical mixing, with other factors such

as grid spacing and data assimilation held constant. We might find that a combination

of schemes is needed to accurately represent vertical mixing in mid-latitudes. Also, the

possibility of using a multi-scale modeling framework such as the Goddard-MMF [Tao et

al., 2009] to explicitly represent moist convection and vertical mixing of tracer within GCM

sized grid cells should not be overlooked.



Chapter 5

IMPLICATIONS OF TRANSPORT BIAS FOR INVERSE FLUX

ESTIMATION

Part 1 (Chapter 3) showed that moist synoptic storms drive meridional sloshing of

CO2 between middle and polar latitudes, which in turn strongly modulates the seasonality

of atmospheric mixing ratios of CO2 in northern latitudes, and that much of this transport is

unobserved by satellites. Part 2 (Chapter 4) showed that CO2 transport by moist synoptic

weather systems is significantly biased when driven by different weather products that are

architecturally very similar but have key differences in horizontal grid spacing and the

strength of fine-scale vertical mixing. Part 3 extends analysis in Parts 1 and 2 by using a

top-down inversion approach to test for flux estimation errors due to systematic differences

in transport between GEOS4 and GEOS5.

5.1 Introduction

The primary goal of CO2 inversions is quantification of source and sink patterns at

fine spatial and temporal scales that are as consistent as possible with CO2 mixing ratio

observations. Such inverse estimates provide independent information on flux distributions

that can then be compared with “bottom-up” estimates. Inversions may also be used in an

OSSE framework to provide specific information about instrument design needed to meet

certain science objectives. For example, future satellite missions use OSSEs to determine

specifics about orbit, averaging kernels (i.e., vertical weighting functions), and measurement

precision that may be needed to measure certain flux signals (e.g., increasing emissions due
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to permafrost melt) produced by the Earth system. Baker et al. [2010] is an excellent

example of an OSSE designed to quantify carbon source and sink information that could

be provided by column CO2 measurements from OCO-2.

Unfortunately, inversion of observed or synthetic data must often assume perfect

transport; that is, winds supplied to the atmospheric transport model are assumed to per-

fectly mimic the real atmosphere. Although not realistic, this assumption is often justified

because there is no simple or standard way for inversions to account for transport errors.

Furthermore, the assumption is reasonable if certain criteria are met. For example, trans-

port errors that are more random than systematic could be assumed to average out over long

enough time scales. If, however, transport errors are biased in some kind of systematic way

(underestimated vertical mixing, phase difference of day-to-day variability due to synoptic

processes, poorly represented PBL heights) then corresponding errors in flux estimation

should also be expected (assuming other components of the inversion system are not biased

in a different direction).

Chapter 4 set out to determine whether transport errors between GEOS4 and GEOS5

existed and to what degree errors were systematic and biased or just purely random. Com-

parison to surface based CO2 mixing ratio observations showed good agreement between

model and observations at synoptic time scales, with small spread between models. Net

meridional transport by moist synoptic storms, however, was shown to be significantly

degraded from GEOS5 to GEOS4. This so-called “eddy” transport component of the mid-

latitude circulation was shown to be most strongly sensitive to (1) grid spacing, with en-

hanced transport on finer grids, and (2) the representation of fine scale vertical mixing by

PBL turbulence and moist convection, with enhanced transport out of polluted boundary

layers associated with weaker fine-scale vertical mixing. Transport errors at synoptic scales

are significant, on the order of 0.1 PgC yr−1 in the annual mean and close to 0.2 PgC yr−1

in northern mid-latitudes during boreal winter and summer. Given that these reanalysis

products are similar in architecture (similar parent GCM, data assimilation schemes, finite-
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differences algorithms, etc.) and run through a common transport model, it is likely that

these are conservative estimates for the types of transport bias to be expected.

The obvious question at this point is whether transport bias is aliased into errors in

flux estimation vis-a-vis CO2 inversion. Baker et al. [2010] tested the effect of transport

errors on flux estimation by generating synthetic satellite retrievals with one transport

model and inverting the retrievals with the same model but with stored meteorology offset

by 18 hours. The result was significant degradation of 7-day flux improvements in the

optimization. Houweling et al. [2010] also tested for the effect of transport errors on

inversion of satellite data, but instead of using the same model offset in time, entirely

different transport models were used to generate satellite data and to run the inversion.

This technique better quantifies errors due to biased transport or systematic differences in

transport. Although seasonal differences in column CO2 were shown to be small (∼ 0.5

ppm), the errors were correlated in space and caused flux estimation errors large enough

that high precision satellite missions such as A-SCOPE might be limited in their ability

to reduce uncertainties in flux estimates and meet science objectives of high accuracy at

regional scales.

In this chapter, inversion techniques are utilized as in Houweling et al. [2010] to test

for flux estimation errors that may result from transport bias. The primary objective is

to generate synthetic satellite measurements of CO2 using a model at fine resolution and

inverting the synthetic data using a similar model at relatively coarse resolution. Control

experiments are also needed to make sure that (1) the optimization technique, in this

study MLEF (discussed in more detail in Chapter 2.6.3), is accurate and robust to random

measurement errors, (2) enough satellite observations are available after cloud screening to

provide a reasonable solution given realistic conditions, and (3) temporal sampling biases

due to cloud screening of column CO2 (discussed in Corbin et al. [2009]) don’t significantly

bias flux estimates. Control experiments will use the same transport model to generate

and invert synthetic satellite data to eliminate possible errors due to transport bias. Given
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the simplicity of these control cases, so-called “sink recovery” experiments are added to

determine whether the inversion can detect realistic sinks hidden within satellite data.

In addition to transport bias, the accuracy of any inversion technique is limited by the

optimization technique. Any given optimization algorithm searches for the best combination

of surface fluxes that is consistent with observations by minimizing a cost function (see

Equation 2.23). In ensemble data assimilation, the solution that best minimizes the cost

function is obtained from a sample of the total range of possible solutions. The ensembles

are therefore an approximation to the full analytical solution. More ensembles facilitate

convergence of this “reduced rank” solution to the full solution but at greater computational

expense. Since a major benefit of ensemble data assimilation is computational savings and

the ability to process large amounts of data, tradeoff is needed between computational

expense and accuracy. Zupanski et al. [2007] show that approximating the full solution does

not have obvious detrimental impact on the solution and is worth the saved computational

cost. The concepts of an “information matrix” and the DFS were discussed in Chapter

2.6.3 as guides for determining an appropriate number of ensembles. Based on this criteria

and considering the large number of satellite data in this experiments, 200 ensembles and

assimilation windows of 14 days were deemed appropriate for this experiment.

For details regarding the inversion framework, including prior estimates, the obser-

vation operator, description of the optimization technique and bias estimation strategy,

covariance smoothing, flux and uncertainty calculations, and basic description of terminol-

ogy, please refer to Chapter 2.6. Note that results in this chapter are presented either as

net flux over the land (terrestrial NEE) or ocean (air-sea exchange). There are a total of

six experiments in this study, with experiments becoming progressively more challenging

for the inversion. The first two (Experiment 1 and 2, Section 5.2) are control experiments,

designed to test for flux errors that arise given perfect transport and unbiased truth. The

next two (Experiments 3 and 4, Section 5.3) are designed to test whether hypothetical

sources and sinks can be recovered from satellite data, given perfect transport and biased
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truth. The last two (Experiments 5 and 6, Section 5.4) test for flux errors that arise given

biased transport and two different scenarios of truth.

5.2 Control Experiments - Perfect Transport

For simplicity, true fluxes are defined with βGPP = βRESP = βOCEAN = 0 so that

truth is unbiased. Satellite data is generated using forward runs of GEOS4-2.5x2, and then

inverted using ensembles of GEOS4-2.5x2 transport. In the absence of any errors in the

ensemble approximation or significant temporal sampling biases after cloud screening, the

inversion will know the satellite data is unbiased and return analyzed fluxes that are equal to

the priors. Two experiments are run: one in which all satellite data is retained (Experiment

1), and one in which satellite data is retained only during sunny conditions (Experiment 2).

In a real inversion clouds and aerosol in the atmospheric column contaminate measurements

of column CO2 and these points must be discarded. Cloud contamination is assessed using

cloud optical depth (τ) from MERRA, with data thrown out if τ > 0.3. So, by introducing

cloud screening in Experiment 2, the OSSEs are tested for sensitivity to (1) less observations

and (2) observations that experience fair weather bias.

5.2.1 Experiment 1: Perfect Transport, Unbiased Truth, and no Cloud Screening

Annual mean errors in terrestrial NEE are shown at pixel scale for Experiment 1 in

Figure 5.1. Since SiB is annually balanced (GPP = RESP ), prior estimates of terrestrial

NEE are zero in the annual mean. Therefore, in a perfect inversion or the case that the

ensemble solution has converged to the full Kalman solution, analyzed fluxes should also

be zero in the annual mean. As can be seen, the inversion is not perfect, and non-zero, but

nevertheless small, flux errors emerge. It is unlikely that these flux errors are due to data

constrains considering the large size of the observation vector in this control case; they are

more likely a result of the ensemble approximation. Fortunately, annual mean flux errors

do have any obvious coherent spatial structure and could be interpreted as random in this
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Figure 5.1: Annual mean errors in terrestrial NEE in units of µmoles m−2 s−1 at pixel
scale (2.5◦x2◦) for Experiment 1.

experiment. These results are helpful confirmation that the inversion is stable and doesn’t

produce extremely biased flux estimates.

It could be argued that small these small annual mean flux errors are a convenient

result of cancellation of larger seasonal errors. Seasonal flux errors are therefore plotted

in Figure 5.2. For comparison to annual mean fluxes, seasonal fluxes are plotted on the

same scale as in Figure 5.1. Larger differences between true and analyzed fluxes exist at

seasonal time scales than in the annual mean, especially during boreal summer. The major

feature that stands out in the seasonal plot is summer efflux out of boreal Asia and uptake

in eastern N. America. These are clearly a non-random features that largely cancel in the

annual mean, which is a slight cause for concern for seasonal inversions. Flux errors during

the remaining seasons are much smaller and seemingly less systematic.

To get a sense of the relative size of flux errors, seasonal errors are compared directly
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Figure 5.2: Similar to Figure 5.1 except plotted as a function of season for Experiment
1: (a) boreal winter, or December-January-February (DJF), (b) boreal spring, or March-
April-May (MAM), (c) boreal summer, or June-July-August (JJA), and (d) boreal fall, or
September-October-November (SOM). The colorbar has the same scale as in Figure 5.1.

to priors (Figure 5.3) and divided by the priors (Figure 5.4) as a measure of percent error,

where blue colors (values close to zero) indicate small errors relative to the priors and red

colors (values close to one) indicate large errors. Together, Figures 5.3 and 5.4 demonstrate

that flux errors are mostly small and trivial (blue shading), especially in northern mid-

latitudes where seasonal NEE is strong. Comparison of red values in Figure 5.4 to priors

in Figure 5.3 indicates that the largest relative errors tend to occur where priors are weak

(deserts, savanna, mountains).

Prescribed and analyzed uncertainties for terrestrial NEE, along with uncertainty re-

ductions, are calculated using the covariance matrix according to Equation 2.27 and plotted

in Figure 5.5. The prescribed error covariance is calculated by assuming prior GPP and

RESP components have uncertainties of σ = 0.2. This prior uncertainty on the component
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Figure 5.3: Seasonal distribution of prior estimate of terrestrial NEE, plotted on the same
scale as Figure 5.1. These priors are used for all experiments in this chapter.

fluxes is somewhat generous, but is chosen such that the vast amounts of satellite data can

help steer the optimized fluxes away from the priors. These large prior uncertainties will be

especially useful when the inversions are confronted with real satellite observations. As seen

in Figure 5.5A, the prescribed error covariance produces reasonable looking uncertainties

over land regions that scales with terrestrial NEE. As expected, the largest uncertainties

occur over tropical regions where component fluxes of GPP and RESP are largest. Pos-

terior uncertainty for a single grid point is large (relative to the mean net flux) relative to

uncertainty aggregated up to larger regions. This is because pixels tend to be anti-correlated

over larger regions, the effect of which is to reduce overall uncertainty.

As discussed in Lokupitiya et al. [2008], cross-correlations in the covariance matrices

become diagonally dominant after a few cycles, despite strong smoothing at the first cycle,

as error covariances learn from the observations. Lokupitiya et al. [2008] also showed that



127

Figure 5.4: Seasonal flux errors for Experiment 1 plotted as a fraction of the prior.

variance (diagonal terms of covariance matrix), and hence uncertainty, is most strongly

reduced in regions where observations are dense. When constrained by surface observations,

the analyzed error covariance is most strongly reduced in northern mid-latitudes. As can be

seen in Figure 5.5 B and C, however, uncertainties are strongly reduced at all latitudes in the

repeating process of assimilation of satellite observations and propagation of error covariance

forward in time to the next assimilation cycle. According to Figure 5.5C, uncertainty is

reduced by about 70-80% globally. Keeping in mind the simplicity of the first experiment,

this is a very encouraging result.

Annual mean flux errors over the ocean are shown in Figure 5.6. Unlike in SiB,

ocean fluxes are not annually balanced and thus priors and truth are non-zero in the annual

mean (see Figure 5.7). As was the case for terrestrial NEE, inversion for air-sea exchange

is not perfect, but errors are small and tend to scale with annual mean ocean flux priors.

It is possible that small ocean flux errors result from ocean fluxes being too weak to be
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Figure 5.5: Annual mean uncertainties in Experiment 1 for (a) prior and (b) analyzed flux.
Uncertainty reduction for terrestrial NEE is shown in the bottom plot (c).

detected in the satellite data by the inversion, and that analyzed fluxes over the ocean are

constrained more by the priors than satellite data. This phenomenon will be discussed in

more detail later in Section 5.3 when the inversion is forced to recover hypothetical biases
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Figure 5.6: Same as Figure 5.1 but for air-sea exchange for Experiment 1. Note difference
in scale between land and ocean.

in air-sea exchange.

As with terrestrial NEE, it is possible that small residual fluxes in the annual mean

are a result of cancellation of larger seasonal fluxes. Seasonal flux errors are therefore

plotted in Figure 5.8. No large cancellation between seasons is apparent, most likely because

seasonality of air-sea exchange is very weak (i.e., there is little change in magnitude or sign of

fluxes within a given region). These results show that annual mean errors are dominated by

net efflux in the northern Pacific and Atlantic during boreal winter and spring. Comparison

to seasonal prior air-sea exchange, plotted in Figure 5.9, shows that the winter and spring

errors in the north Pacific and Atlantic scale slightly with an uptake feature in the Gulf

Stream. Air-sea exchange errors are divided by ocean priors in Figure 5.10. Ocean flux

errors are mostly small and trivial (blue shading), with the largest errors approximately

20% of the prior. Errors are smallest where ocean exchange is strongest, and largest where

ocean exchange is weakest.
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Figure 5.7: Same as Figure 5.6 but for prior air-sea exchange.

Prescribed and analyzed uncertainties for air-sea exchange, along with uncertainty

reductions, are calculated using the covariance matrix according to Equation 2.29 and plot-

ted in Figure 5.11. The prescribed error covariance is calculated by assuming ocean priors

have an uncertainty of σ = 0.1. The prescribed uncertainty over the ocean is half that of

GPP and RESP because ocean fluxes are much weaker than terrestrial NEE and therefore

more difficult to detect in satellite data. As a consequence, and more importantly by design,

ocean flux estimates tend to be more heavily weighted towards the priors. The prescribed

error covariance produces reasonable looking uncertainties over ocean regions that scales

with the largest air-sea exchanges (Figure 5.11A). Although not comparable in reduction

to terrestrial NEE, and despite the weaker flux signal, uncertainties over the ocean are

still strongly reduced at global scale in the process of assimilation of satellite observations

(Figure 5.11B). According to Figure 5.5C, uncertainty is reduced by 40-50% globally. This

result is encouraging, but not as much so as the uncertainty reduction for terrestrial NEE.
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Figure 5.8: Similar to Figure 5.6 for Experiment 1, except plotted as a function of season
(a) DJF, (b) MAM, (c) JJA, and (d) SON. The colorbar has the same scale as in Figure 5.6.

5.2.2 Experiment 2: Perfect Transport, Unbiased Truth, and Cloud Screening

Experiment 2 is the same as Experiment 1 except that satellite data is screened

for clouds. More importantly, column CO2 data from moist synoptic storm systems is

excluded. This means that a large number of points are discarded and the observation

constraint is greatly reduced from Experiment 1 (e.g., see Figure 2.3). Cloud screening is

performed by sampling forward model runs only when τcld < 0.3. While it is more realistic

to use observed cloud distributions, here τcld is prescribed from MERRA to be consistent

with weather driver data used in this study (see Chapter 2.6.2). Note that aerosols also

contaminate satellite measurements but are not considered in this study.

Annual mean errors in terrestrial NEE are shown at pixel scale for Experiment 2

in Figure 5.12. The largest errors are incurred over the tropics where cloud screening

eliminates most of the data (see Figure 2.2B and 2.3). Flux errors are actually reduced
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Figure 5.9: Same as Figure 5.8 except for air-sea exchange priors.

over N. America relative to Experiment 1, but become more positively biased in Europe.

Flux errors due to cloud screening are trivial in the annual mean.

Seasonal errors (Figure 5.13) are by comparison much larger and therefore nontrivial.

Tropical regions experience large errors during all seasons. Europe experiences large positive

bias during boreal spring and summer. Large seasonal errors occur over N. America (positive

bias during summer, negative bias the remainder of the year) that cancel in the annual mean.

Boreal and temperate Eurasia continue to experience very little error throughout the year.

In general, seasonal errors in Experiment 2 are more spatially coherent than in Experiment

1. Data reduction hasn’t simply relaxed the solution to the priors. Fair weather bias

in measurements have steered the solution away from internal errors due to

ensemble approximation, most notably toward positive bias during summer in

northern temperate and boreal latitudes.

Uncertainty is not as strongly reduced in Experiment 2 (50-60% globally, see Fig-
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Figure 5.10: Seasonal errors in air-sea exchange in Experiment 1 plotted as a fraction of
the prior.

ure 5.14B and C) because there is much less data for the information matrix in Equation

2.25 to learn from. However, considering the huge reductions of satellite data, especially

in the amazon where clouds are prevalent all year, substantial reductions in uncertainty

are nevertheless achieved. Flux errors over the ocean are actually much weaker than when

cloud screening isn’t applied (also not shown). This is most likely because there is so little

information over the ocean (e.g., Figure 2.2) that the inversion is forced to relax to the

priors.

5.2.3 Aggregation of Experiments 1 and 2 up to TransCom Regions

Flux errors (and uncertainties) are often correlated in space due to (1) spatial smooth-

ing applied to the covariance matrix during the first assimilation cycle, (2) transport pat-

terns that emerge from the prevailing wind, and (3) spatial coherence of vegetation type.
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Figure 5.11: Annual mean uncertainties in Experiment 1 for (a) prior and (b) analyzed
air-seas exchange. Uncertainty reduction is shown in the bottom plot (c).

Uncertainties are also highly anti-correlated in space so it is useful to aggregate up to larger

regions to reduce the uncertainty of flux errors. A common practice for global scale inver-
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Figure 5.12: Same as Figure 5.1 except for Experiment 2.

sion experiments is to aggregate fluxes up to TransCom-sized basis functions that reflect

both geographical and mechanical elements (see Figure 5.15). In this way, flux errors over

large regions can be related to realistic land cover type classification.

Annual flux and uncertainty estimates for Experiments 1 and 2 are aggregated up,

binned into TransCom regions (11 land and 11 ocean), and converted to GtC year−1 in

Figure 5.16 according to Equations 2.30-2.33. Note that since total annual prior (also truth

in this case) terrestrial NEE is zero at every pixel (SiB3 balances GPP and RESP in

an annual cycle), aggregation up to TransCom regions also results in zero net flux. Total

annual prior air-sea exchange is non-zero at pixel and TransCom scale.

In Experiment 1, recovered fluxes of terrestrial NEE are close to zero when aggregated

up, never more than 0.15 GtC year−1 away from zero and, except for Australia, always

within 1 σ of the truth. This is good; the simplified inversion does not create fluxes that

are significantly biased from the truth. The same is true for air-sea exchange, which has
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Figure 5.13: Flux errors plotted as a function of season for Experiment 2: (a) boreal winter,
or December-January-February (DJF), (b) boreal spring, or March-April-May (MAM), (c)
boreal summer, or June-July-August (JJA), and (d) boreal fall, or September-October-
November (SOM). The colorbar has the same scale as in Figure 5.12.

an even tighter uncertainty. Overall, there tends to be negative bias in terrestrial NEE

in Experiment 1, which is dominated by negative biases in the tropics and Temperate N.

America.

Cloud screening in Experiment 2 doesn’t change annual TransCom sized fluxes sig-

nificantly, but there are some very noticeable and important differences from Experiment

1. First, reduction of satellite data increases posterior uncertainty of flux estimates. While

fluxes in most regions are within 1 σ of the truth, flux errors in Australia and Europe reach

∼ 0.1 ± 0.115 and 0.25 ± 0.245 GtC year−1, respectively, and are 1 σ away from the truth.

N. Africa is within 1 σ of the truth but incurs an error of nearly 0.2 ± 0.350 GtC year−1

due to cloud screening. Ocean flux estimates are closer to the truth in Experiment 2 than

Experiment 1 because data reduction has given more weight to priors. The total land flux
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Figure 5.14: Annual mean uncertainties in Experiment 2 for (a) prior and (b) analyzed flux.
Uncertainty reduction for terrestrial NEE is shown in the bottom plot (c).

has a positive bias of 0.3 ± 1.2 GtC year−1, which is about 10% of the total annual global

sink. The total land bias is dominated by positive bias in Europe, Eurasian Boreal, and

Australia.
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Figure 5.15: TransCom basis functions.

The effect of removing column CO2 data from moist synoptic storms in mid-latitudes

and day-to-day weather in the tropics through cloud screening is more obvious in seasonal

plots of flux errors from Experiments 1 and 2 (Figure 5.17), where Experiment 1 is plotted in

green and Experiment 2 in blue to be consistent with Figure 5.16. The pattern for northern

boreal and temperate latitudes (Boreal and Temperate N. America, Eurasian Boreal and

Temperate, and Europe) is for positive bias during summer (consistent with Figure 5.13)

relative to Experiment 1 and to net zero error, negative bias during shoulder seasons, and

little to no bias during winter. The strongest positive bias, 0.1 PgC, occurs during summer

in Europe. The largest errors at northern latitudes also tend to occur during summer,

suggesting that cloud screening becomes more detrimental for flux estimation during the

growing season when component fluxes are larger. While there are no obvious patterns for

flux errors in the tropics, flux errors are nevertheless larger on average at monthly time

scales when cloud screening is applied.
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Figure 5.16: Bar plot of total annual fluxes from prior (dark blue), analysis from Experiment
1 (green), and analysis from Experiment 2 (red) with corresponding posterior uncertainty
estimates (standard deviation), aggregated up to TransCom Regions (see Figure 5.15), in
GtC year−1. The top 11 regions correspond to land, the next 11 regions correspond to
ocean, and the bottom two regions correspond to total land and ocean.
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Figure 5.17: Seasonal flux errors for TransCom land regions 1-11 for Experiment 1 (green)
and Experiment 2 (red), plotted in GtC month−1.

5.3 Bias Recovery and Perfect Transport

The previous experiments tested the inversion framework for systematic errors in flux

retrieval due to (1) internal problems with the optimization that might arise, for example,
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due to the ensemble approximation (Experiment 1) and (2) reductions of observation con-

straint due to cloud contamination (Experiment 2). The results showed that the inversion is

fairly robust to random measurement errors, but not necessarily data reductions that intro-

duce fair weather bias into the measurements. These experiments are extremely simplified

in the sense that the true fluxes are unbiased, and therefore the same as the priors.

The next step is to test whether the inversion can recover hypothetical truths hidden

within cloud-screened satellite data and therefore learn from satellite data that contains

signals due to fluxes that differ from the priors. To simulate a real world situation that the

inversion might encounter, true fluxes are prescribed from realistic carbon processes that

cause a net annual sink of ∼3 GtC over land. The catch is that, while such a prescribed

global land sink is realistic, the underlying processes are slowly varying and produce fluxes

that are small relative to background fluxes. For example, terrestrial NEE varies strongly

in time and space due in large part to variations of solar radiation, which varies in time

at diurnal, synoptic, and seasonal scales and in space as a function of latitude and season.

Prescribed sinks are assumed to be small but persistent such that, over time, the inversion

sees through background noise and recovers low signal-to-noise information.

As discussed in Chapter 2.6.1, hypothetical truths are generated by assuming that

background fluxes are systematically biased by processes not modeled well in SiB. Processes

that bias model estimates of GPP include underestimation of available nitrogen, forest man-

agement, agricultural land use, and CO2 fertilization. An example of a process that biases

RESP is forest regrowth. These persistent processes are represented by the multiplicative

correction factors βGPP and βRESP , which were set to zero in control experiments. To gen-

erate hypothetical truth from these processes, βGPP and βRESP are prescribed according

to the maps in Figure 5.18. GPP (Figure 5.18A), for example, is enhanced (βGPP > 0) in

this hypothetical world in (1) northern mid-latitude terrestrial forests in the northeastern

temperate N. America and Europe and (2) tropical regions of S. America, Africa, and Asia.

Processes that control long-term and persistent enhancement of GPP include nitrogen de-
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Figure 5.18: Multiplicative correction factors βGPP (a), βRESP (b), and βOCEAN (c).
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position in the eastern N. America, agricultural land use in Europe, and CO2 fertilization

in the tropics. To simulate regrowing forests in northeastern Temperate N. America that

result from forests still recovering from agricultural abandonment and forests harvested be-

fore 1980, respiration (Figure 5.18) is reduced by 5% (βRESP = −0.05), since by definition

a regrowing forest is one in which RESP lags GPP .

Biases in air-sea exchange are also included in this experiment (Figure 5.18C) as

a function of latitude, with enhancement of flux in northern middle and high latitudes,

reduction of flux at tropical latitudes, and strong reduction of flux at southern middle and

high latitudes. Relative to annual mean air-sea exchange shown in Figure 5.7, these biases

enhance uptake in the north Pacific and Atlantic Oceans (deepening mixed layers), reduce

outgassing in the tropics and especially in the eastern Pacific (enhanced upwelling during La

Nina), and reduce outgassing in the Southern Ocean (enhanced circulation during climate

change relaxes back to conditions typical of a pre-industrial climate).

Like in the control experiments, the bias recovery experiments assume that β′s are

initially unknown in the priors by setting βGPP = βRESP = βOCEAN = 0. Experiment 3

assumes that true β′s are constant throughout the year. Experiment 4 assumes β′s vary

in space and time and are perturbed with a random 10% noise. This added complexity is

necessary considering that β’s, which represent slowly varying processes in the real world,

may be persistent but are likely not constant in time or smooth in space.

5.3.1 Experiment 3: Perfect Transport, Constant and Unperturbed Biases, and

Cloud Screening

Maps of total annual true and recovered fluxes are shown at pixel scale in Figure 5.19.

By design, the truth (Figure 5.19A) contains net sinks in the annual mean in temperate N.

America, Europe, and tropical S. America, Africa, and Asia. Recovered sinks are re-

markably similar in both pattern and magnitude , most notably in the eastern United

States and throughout the tropics (Figure 5.19B). The seasonal cycle of terrestrial NEE is
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Figure 5.19: True (a) and recovered (b) annual mean terrestrial NEE in µmoles m2 s−1 for
Experiment 3.

also recovered well, as demonstrated by a plot of seasonal prior, true, and recovered NEE

at a location from the middle of the forest in northeastern United States (see Figure 5.20).

This shows that the sink at this location is partially recovered at monthly time scales. The

recovered flux has a tendency towards the true flux but is pulled back by the prior weighting.

According to Figure 5.19, there are several differences between the true and recovered

fluxes, most noticeably in western Europe, the east coast of S. America, S. Africa, and
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Figure 5.20: Seasonal cycle of prior (black line), true (red line), and recovered (blue line)
terrestrial NEE in µmoles m2 s−1 at a forested location in Temperate N. America with
coordinates [80◦W, 40◦N].

eastern Australia. These errors are especially apparent in a map of the difference between

recovered and true fluxes shown in Figure 5.21. Flux errors are largest where artificial sinks

are prescribed.

Total annual recovered sinks, along with prior and true fluxes as reference, are aggre-

gated up to TransCom regions and shown as bar plots with posterior uncertainty estimates

in Figure 5.22. Agreement at the continental scale of TransCom regions is remarkably good.

The most impressive results are in recovery of terrestrial NEE, especially in Temperate N.

America, S. America Tropical, S. Africa, and Tropical Asia. The recovered flux in Temper-

ate N. America is nearly indistinguishable from the true flux. Comparison of bias recovery

in Experiment 3 with unbiased recovery in Experiments 1 and 2 (see Figure 5.16) shows

that recovered fluxes for the most part stay true to the satellite data. It is very encouraging,
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Figure 5.21: Difference between true and recovered annual mean flux, in µmoles m2 s−1,
for Experiment 3.

for example, that recovered fluxes are closer to the truth than the prior. Furthermore, with

the small exception of Tropical Asia, recovered fluxes are always within 1 σ of the truth. In

regions where substantial sinks are prescribed such as Temperate N. America, S. America

Tropical, and N. Africa, flux estimates are certain to within 1 σ of having the correct sign

(i.e., source vs sink). These posterior uncertainty estimates need to be interpreted carefully,

however, as they are strongly dependent on prior uncertainty, which at 20% of component

fluxes is somewhat generate.

The seasonality of recovered fluxes in TransCom regions is also impressive (Fig-

ure 5.23). As in Figure 5.21, prior fluxes in Temperate N. America are eventually pulled

towards the truth in late summer and fall. The large sink in S. America Tropical is ∼100%

recovered from the onset of data assimilation. The same is true for Tropical Asia.

Some noteworthy errors are apparent in recovery of TransCom scale sinks. Like in

Experiments 1 and 2, recovered fluxes have a strong positive bias relative to the truth in

Australia and Europe. The recovered flux over Europe suggests a net source when actually
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Figure 5.22: Bar plot of annual prior flux (dark blue), true flux (green), and recovered flux
(red), aggregated up to TransCom regions like Figure 5.16, and plotted in GtC year−1 for
Experiment 3. Posterior uncertainty is plotted in red.

the true flux is a sink. The seasonal distribution of the European sink recovery shows

that Europe stays close to the prior for almost the entire year, and is at least 1 σ away

from the truth for much of the year. The recovered solution should always fall somewhere
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Figure 5.23: Seasonal cycle of prior (black), true (red), and recovered (blue) TransCom
fluxes for Experiment 3 (biased truth) for land regions 1-11, plotted in GtC month−1.
Posterior (red) uncertainties are plotted as error bars.

between the prior and true flux, but this is not always the case (e.g., N. Africa in the annual

mean and S. Africa at the end of the year) due to errors discussed in Experiments 1 and

2. The total recovered land sink is within 20% of the truth (not shown), which isn’t bad
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but leaves room for improvement. Recovered ocean fluxes aren’t significantly different from

priors. This is expected because it is assumed that ocean models are able to better simulate

slowly varying processes than process-based ecosystem models of terrestrial NEE. That

being said, the inversion was given the opportunity to recover biases in air-sea exchange.

Overall, recovered fluxes fall somewhere between priors and truth.

5.3.2 Experiment 4: Perfect Transport, Seasonal and Noisy Biases, and Cloud

Screening

Seasonality is added to β′s in Figure 5.18 through a sinusoidal function with peak

amplitude during boreal summer such that fluxes in northern latitudes are most strongly

biased during the active part of the growing season. To represent this seasonal dependence,

constant β′s are divided into 12 monthly values and then multiplied by the function 1 +

0.5cos(x+π). This has the effect of changing regional sinks by a few percent, but increasing

the total land sink only very slightly from 2.253 to 2.305 PgC month−1. β′s are then

multiplied by white gaussian noise with µ = 0 and σ = 0.1 using the rnorm(..) function

in FORTRAN . Maps of true and recovered fluxes are shown at pixel scale in Figure 5.24.

Recovered sinks are again similar in both pattern and magnitude, and overall not much

different from Experiment 3. The recovered fluxes aren’t as noisy as the true fluxes due

to (1) covariance smoothing in the first run and (2) smoothing out of noisy flux patterns

by atmospheric mixing. It is likely, however, that small scale variations in the β′s could

be recovered more accurately with surface measurements that are close, but not too far

downstream, to the sources and sinks.

As was done for the case of constant β′s, total annual prior, true, and recovered fluxes

are aggregated up to TransCom regions in Figure 5.25. Agreement at the continental scale

of TransCom regions continues to be remarkably accurate despite biases that change with

time and aren’t as smoothly distributed as in Experiment 3. These β recovery runs have

shown that the inversion is can detect small and slowly varying signals in the satellite data
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Figure 5.24: True (a) and recovered (b) annual mean terrestrial NEE in µmoles m2 s−1 for
Experiment 4.

despite random noise in the measurements and true fluxes.

5.4 Biased Transport

The control runs in Section 5.2 illustrate the degree of accuracy of the MLEF inver-

sion strategy given perfect transport and unbiased truth. Flux errors are generally small

(although biased in northern summer latitudes) despite 3 ppm random measurement noise.
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Figure 5.25: Bar plot of annual prior flux (dark blue), true flux (green), and recovered fluxes
(red) for Experiment 4.

With a couple exceptions, true fluxes fall within 1 σ of the recovered flux. Realistic sources

and sinks are then hidden within satellite data in Section 5.3 to test whether the inversion

could recover small sinks superimposed on large background fluxes. These β recovery runs
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illustrate the ability of MLEF to recover realistic sinks from satellite data given perfect

transport and biased truth that differs from prior estimates by multiplicative correction

terms. Together, the previous experiments have set the stage to test whether biased trans-

port becomes aliased into optimized fluxes. To test for flux estimation errors due to biased

transport, it is imperative that the inversion assumes perfect transport. One could, for

example, account for biased transport in the observation covariance matrix. It is possible,

however, that transport errors, whether purely random or biased, do not cause flux errors.

In this case, there would be no need to account for biased transport. Perfect transport must

therefore be assumed to determine whether flux errors different previous experiments arise.

The following experiments are carried out in the sense that synthetic satellite mea-

surements are generated using one model and inverted using another model. Forward model

runs with PCTM driven by GEOS5-0.67x0.5 are used to produce synthetic measurements,

where realistic four-dimensional CO2 output is sampled using the same GOSAT orbital

ephemeris in the previous experiments. Due to the global mesoscale resolving capacity of

GEOS5-0.67x0.5 meteorology, the synthetic measurements can thought of as a very good

representation of actual satellite observations. These synthetic retrievals are then inverted

using MLEF inversion of PCTM transport driven by the coarse grid of GEOS4-2.5x2. As

discussed in Chapter 4, these models produce similar looking variations of CO2 at synoptic

timescales using the same basic eddy transport mechanisms, but horizontal gradients of CO2

are much stronger in simulations driven by GEOS5-0.67x0.5. The goal here is to sample

column CO2 mixing ratios from the higher resolution simulations and then assess how these

mixing ratios are interpreted by an inversion that then uses coarse resolution transport to

translate synthetic measurements from another model back to surface flux distributions.

If variations of column CO2 are systematically different between transport models, surface

fluxes backed out of the inversion will be different from surface fluxes going into synthetic

measurements, and flux estimation errors will result.

Two experiments are run: Experiment 5, where unbiased truth (priors with β’s set to
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zero) is run through GEOS5-0.67x0.5 to generate synthetic satellite data, and Experiment

6, where biased truth (priors with monthly varying non-zero β’s added to generate annual

sinks) is run through GEOS5-0.67x0.5. Experiment 5 is therefore related to Experiment 2

in that the same true fluxes are used, but different in that true fluxes are run through a

different transport model. Experiment 6 is related to Experiment 4 for the same reason.

5.4.1 Experiment 5: Biased Transport, Unbiased Truth, and Cloud Screening

Annual mean errors in terrestrial NEE are shown at pixel scale in Figure 5.26. Large,

Figure 5.26: Annual mean flux errors over land for Experiment 5 (unbiased truth), plotted
in µmoles m−2 s−1 at pixel scale (2.5◦x2◦).

spatially coherent flux errors emerge on a global scale due to differences in

transport between GEOS4 and GEOS5 . In particular, sinks appear over N. America

and tropical Asia while net sources emerge over Europe and temperate and boreal Asia. S.

America and S. Africa have strongly opposing sources and sinks. Annual errors in Experi-
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ment 5 are significantly larger than those in Experiment 2.

It is even worse on seasonal timescales (Figure 5.27), especially during boreal sum-

mer. In most regions, similar patterns are seen throughout the year. For example, sinks

Figure 5.27: Seasonal flux errors over land for Experiment 5.

consistently arise in N. America, sources in Europe, and strongly opposing sources and sinks

in S. America and Africa, regardless of season. The summer sink in N. America in

particular is in stark contrast to the summer source created when cloudy points

were removed in Experiment 2 . There tends to be seasonal variations of sources and

sinks in boreal Eurasia, with zero net flux during winter, sinks during spring, a strong source

during summer, and back to a sink during fall.

These results are aggregated up to TransCom regions and compared to experiments

with perfect transport in Figure 5.28. The key result here is that flux errors are small at

continental scale, with truth contained within the 1 σ bounds of the posterior uncertainty,

when transport is unbiased and all satellite points are included (Experiment 1). When
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Figure 5.28: Bar plot of annual prior (dark blue), flux errors from Experiment 1 (light blue,
perfect transport and no cloud screening), Experiment 2 (yellow, perfect transport and
cloud screening), and Experiment 5 (red, biased transport and cloud screening), aggregated
up to TransCom land regions and plotted in GtC year−1.

cloud screening is applied similar errors occur, except flux errors grow large enough in

Australia and Europe that the truth is no longer contained within 1 σ (Experiment 2).
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With the exception of Europe and Australia, the inversion incurs mostly small errors when

given realistic satellite data and a perfect transport model. When transport is biased,

however, much larger continental scale flux errors occur. In the cases of Boreal N. America,

Temperate N. America, Eurasian Temperate, Australia, and Europe, flux errors are large

and certain enough that the truth is no longer contained within 1 σ of the recovered flux.

The largest flux errors occur in Europe and Temperate N. America, amounting

to 0.51 ± 0.256 and -0.41 ± 0.324 GtC year−1, respectively .

The seasonal cycles of true and recovered fluxes for TransCom land regions are shown

in Figure 5.29. Recovered fluxes have the same seasonality as the truth, but are sometimes

characterized by fluctuations about the truth. While flux errors accumulate in the annual

mean as shown in Figure 5.28 over certain regions such as Europe, Eurasian Temperate,

Temperate N. America, and Boreal N. America, other regions, such as S. America Tropical

(and the tropics in general) have large seasonal errors that cancel in the annual mean.

Finally, like in previous experiments without transport bias, posterior uncertainty estimates

continue to decrease in time relative to the prior. Introduction of transport bias into

the MLEF framework causes the inversion to become more certain about the

wrong answer.

5.4.2 Experiment 6: Biased Transport, Biased Truth, and Cloud Screening

Annual errors due to biased transport and biased truth (i.e., monthly varying sinks)

are also significant (Figure 5.30), but not much different from errors due to biased transport

and unbiased truth. Posterior uncertainty estimates are actually larger in a few regions

when transport is biased. This is because the uncertainty is a function of the variance of β

times component flux estimates. Flux estimates in most regions are slightly larger (or more

wrong) in the case of biased transport, and so uncertainty also increases slightly.

The seasonal cycle of true and recovered fluxes for TransCom land regions for the

case of biased truth is shown in Figure 5.31. Like in Experiment 5, recovered fluxes have
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Figure 5.29: Seasonal cycle of true (black) and recovered (red) TransCom fluxes for Exper-
iment 5 (unbiased truth) for land regions 1-11, plotted in GtC month−1. Prior (blue) and
posterior (red) uncertainties are plotted as error bars.

the same seasonality as the truth with some fluctuation superimposed by transport bias.

Also like Experiment 5, posterior uncertainty decreases in time relative to the prior. In

most cases, the truth is contained within 1 σ of the posterior uncertainty. Flux estimates in
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Figure 5.30: Bar plot of annual prior (dark blue), flux errors from Experiment 4 (green,
perfect transport and monthly varying sinks), and Experiment 6 (red, biased transport
and monthly varying sinks), aggregated up to TransCom land regions and plotted in GtC
year−1.

some regions such as Tropical Asia, Boreal N. America, and Eurasian Temperate are just

outside the truth. Europe is a fairly extreme outlier in this experiment and is close to 2 σ
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Figure 5.31: Seasonal cycle of true (black) and recovered (red) TransCom fluxes for Ex-
periment 6 (biased truth) for land regions 1-11, plotted in GtC month−1. Prior (blue) and
posterior (red) uncertainties are plotted as error bars.

away from the truth during the summer.

Seasonal flux errors (recovered minus true) for TransCom land regions are plotted for

Experiments 5 and 6 in Figure 5.32. With the exception that Experiment 5 thinks strong
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Figure 5.32: Seasonal flux errors for TransCom land regions 1-11 for Experiment 5 (blue)
and Experiment 6 (green), plotted in GtC month−1.

summer drawdown occurs in Boreal and Temperate N. America, the seasonality of flux

errors is consistent between biased transport experiments. It seems the need for a strong

sink in the biased transport model is satisfied by the N. American sink imposed in the
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satellite data in Experiment 6.

5.5 Discussion and Conclusions from Part 3

This chapter consists of a comparison of end-to-end OSSEs with perfect and biased

transport to test for flux estimation errors in the MLEF inversion framework. All flux

estimates were optimized using MLEF inversion of synthetic satellite data with 3 ppm

random measurement error. In the so-called perfect transport OSSEs, which consisted of

experiments with and without hypothetical carbon sinks hidden within satellite data, the

same transport model (PCTM driven by GEOS4-2.5x2) was used to generate and invert

synthetic data. Because of the possibility that systematic errors in transport, such as those

discussed in Chapter 4, are aliased into errors in inverse estimates of surface flux, a third set

of so-called biased transport OSSEs were run in which synthetic satellite data was generated

using a global mesoscale model (PCTM driven by GEOS5-0.67x0.5) and inverted using a

coarse resolution global model (PCTM driven by GEOS4-2.5x2).

The perfect transport OSSEs are robust to random measurement errors and are able

to recover small but reasonable looking sinks hidden within satellite data. The robustness

of the inversion to random measurements errors results from the tendency for random

errors to average out over time (in contrast to biased measurement errors, which are not

discussed in this study). Small flux estimation errors are incurred in the perfect transport

OSSEs, however, when column CO2 data is excluded due to cloud contamination. There is

a tendency in northern latitudes, most notably in Europe, for positive surface flux biases

during the growing season, suggesting that synthetic satellite measurements must also have

positive bias when data from moist synoptic storms is excluded. This is consistent with

temporal sampling errors in atmospheric CO2 mixing ratio calculated by Corbin et al. [2008]

who show, along with Parazoo et al. [2008], that satellite data becomes enriched with CO2

during the growing season primarily due to masking of large horizontal CO2 gradients from

satellites by clouds. These simple perfect transport OSSEs have demonstrated the tendency
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for fair weather bias in satellite measurements in northern mid-latitudes to be aliased in flux

inversions as spatially coherent positively biased surface fluxes of up to 0.1 PgC month−1

but at the very worst no more than 0.257 ± 0.245 PgC year−1.

Nevertheless, the inversion recovers realistic looking sinks hidden in satellite data de-

spite (1) errors that result from excluding data in moist synoptic storms, (2) large and high

frequency background noise, (3) random measurement errors of 3 ppm, and (4) monthly

varying sources and sinks that contain random spatial noise. The most remarkable sink

recovery occurs in the Amazon, where satellite data is all but eliminated by clouds. Further

investigation is needed, but two possible explanations are (1) weak Coriolis and slow mixing

timescales enhance atmospheric memory of nearby sources and sinks, thus increasing the

odds that a satellite will sample a non-cloudy and information containing pixel, and (2)

information over S. America is eventually propagated offshore where the chance of cloud

contamination is reduced. Because the sinks are slowly varying and persistent throughout

the year, and the MLEF framework is designed to propagate state vectors and error co-

variance matrices forward in time between assimilation cycles, optimized fluxes are able to

learn from a years worth of satellite data and converge within reasonable distance of the

true fluxes. Overall, this system produces excellent grid-scale and TransCom scale fluxes,

assuming perfect transport.

Biased transport leads to substantial errors in flux estimation at all latitudes. The

largest annual errors occur in northern temperate and boreal latitudes, including Boreal

and Temperate N. America, Eurasian Temperate, and Europe. For example, the inversion

estimates a 0.5 ± 0.256 GtC year−1 source in Europe (nearly double the error due to cloud

screening) and 0.41 ± 0.324 GtC year−1 sink in Temperate N. America (almost no error

due to cloud screening) even though no such sources or sinks are prescribed in the satellite

data. Other regions that don’t experience large annual errors actually experience huge

opposing seasonal errors that cancel. Flux errors are equally large when sinks are added

to the satellite data. The inversion is confident to 1 σ that 5 out of the 11 land regions
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contain sources or sinks of CO2 that don’t exist in the true fluxes. These flux error estimates

are likely to be conservative given that the (1) two analysis products used in the biased

transport OSSE are similar in architecture and (2) same chemistry transport model is used

to generate and invert synthetic satellite data.

Flux errors caused by biased transport present a real challenge for inversion modelers

and, as discussed in a similar study by Houweling et al. [2010], puts stringent requirements

on the performance of transport models. Theoretically, transport errors could be accounted

for in the observation covariance matrix. This is currently done in in-situ inversions in

response to high uncertainty of nocturnal boundary layer dynamics by strongly reducing

the precision of nocturnal continuous measurements [e.g., Lokupitiya et al., 2008]. This

solution is less than ideal, however, as these measurements are essentially filtered from the

inversion and therefore contribute almost no information to flux optimization. A far more

desirable solution is to improve model representation of boundary layer mixing through

some combination of development of model dynamics and data assimilation techniques.

This raises the question as to whether there are certain aspects of model development

that could and/or should receive priority. With regard to this study, are there certain sys-

tematic differences between GEOS4-2.5x2 and GEOS5-0.67x0.5 that cause large pixel- and

continental- scale flux errors? For example, Chapter 4 discussed two important differences

between these models: (1) systematically weak vertical mixing in GEOS5-0.67x0.5 and (2)

finer grid spacing and therefore better resolution of baroclinic waves. Although eddy trans-

port differences are significant during winter, results from this chapter indicate that flux

errors in northern mid-latitudes are very small during winter; thus, winter transport bias

winter might not matter for flux inversion. However, large eddy transport errors also occur

during summer, and we saw that annual mean flux errors are dominated by errors during

summer when component fluxes and fine-scale vertical mixing by deep convection peak. It is

therefore possible that weak vertical mixing in GEOS5-0.67x0.5 during summer contributes

significantly to flux errors. This is certainly consistent with many previous studies [e.g.,
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Stephens et al., 2007] who find that vertical mixing and surface flux estimation are strongly

related. Future studies could do a much better job isolating the primary source of error

by inverting satellite data with a model that has the capability of running a multiple grid

spacing with vertical mixing held constant, and vice-versa.



Chapter 6

CONCLUSIONS AND FUTURE WORK

Mass transport along moist isentropic surfaces on baroclinic waves represents an

important component of the atmospheric heat engine that operates between the equator and

poles. This is also an important vehicle for tracer transport, and is correlated with ecosystem

metabolism because large-scale baroclinicity and photosynthesis are both driven seasonally

by variations in solar radiation. This research has pursued a dynamical framework for

explaining atmospheric transport of CO2 by synoptic weather systems at middle and high

latitudes. A global model of atmospheric tracer transport, driven by meteorological analysis

in combination with a detailed description of surface fluxes, is used to create time varying

CO2 distributions in the atmosphere. Simulated mass fluxes of CO2 are then decomposed

into a zonal monthly mean component and deviations from the monthly mean in space and

time. Mass fluxes of CO2 are described on moist isentropic surfaces in order to include

transport along frontal systems in the eddy-terms rather than in the mean.

The resulting transport by CO2 mass fluxes in moist conveyors and dry intrusions

accounts for significant exchanges of CO2 of up to 1 PgC month−1 between middle and

high northern latitudes. Through seasonal covariance with ecosystem metabolism, synoptic

eddies modulate the seasonality of CO2 mixing ratios in northern latitudes by strongly

damping seasonality in the biologically active mid-latitudes by 50% of that implied by

NEE while strongly amplifying seasonality in the Arctic. Meridional fluxes of CO2 are

of comparable magnitude as biological and anthropogenic surface exchange of CO2 and

thus require careful consideration in (inverse) modeling of the carbon cycle. An additional
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complication arises in that transport along stormtracks is correlated with rising, moist,

cloudy air along frontal clouds and moist conveyors, which systematically hide this CO2

transport from satellites. Continuous in-situ records can supplement airborne and remotely

observed measurements during inclement weather, but only at a few locations. This fair-

weather bias in measurements puts stringent requirements on models of moist transport.

Tracer transport by frontal systems and moist processes occurs on scales that are typ-

ically poorly represented in global models and may therefore be a source of error for inverse

estimates of CO2 flux. Uncertainty in meridional transport is investigated by calculating

model spread in eddy transport by a global model driven by four analysis products from

the Goddard EOS Data Assimilation System for 2005 in combination with identical surface

fluxes. Eddy transport is found to be highly variable between simulations, with significant

seasonal biases of up to 0.2 PgC, representing up to 50% of fossil fuel emissions. The anal-

ysis products used are architecturally very similar and these bias estimates are therefore

likely to be conservative. Differences in grid spacing and vertical mixing by moist convec-

tion and PBL turbulence are the primary culprits for the large model spread. Enhanced

grid spacing is shown to dramatically improve the fine-scale structure of baroclinic waves,

but strong sensitivity of CO2 mixing ratio distributions, and therefore eddy transport, to

uncertain vertical mixing parameters makes it difficult to gauge improved fidelity of CO2

transport at global mesoscale resolution relative to the coarse grid analysis forcing.

To test for aliasing of transport bias into inverse flux estimates, synthetic satellite

data is (1) generated by sampling forward simulations from the global mesoscale model using

the GOSAT orbital ephemeris and (2) inverted using the coarsest grid model. The MLEF

ensemble filtering method is used to optimize fluxes. When the same transport model is

used to generate and invert satellite retrievals, the inversion framework is able to recover

realistic looking sinks hidden within the data. When different transport models containing

systematic biases due to vertical mixing and grid spacing are used, flux estimates are highly

biased at pixel and continental scale at all latitudes. The most significant errors are the 0.5
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± 0.256 GtC year−1 source in Europe and a 0.41 ± 0.324 GtC year−1 sink in Temperate

N. America. A portion of the total error in the biased transport experiment is attributed

to temporal sampling biases that occur in northern temperate and boreal latitudes during

the growing season as a result of exclusion of column CO2 data from moist synoptic storm

systems. There are also large seasonal errors in tropical regions. Errors due to transport

bias are likely to be conservative, assuming flux errors scale with transport bias.

Key results are highlighted below...

• The prominence of tracer transport by synoptic storms is illustrated more clearly

when written on moist isentropic surfaces

• Synoptic storms strongly damp the seasonality of CO2 mixing ratio in northern

mid-latitudes to about half of the seasonality implied by net ecosystem exchange,

while amplifying seasonality in the Arctic

• Meridional fluxes of CO2 by synoptic storms are of similar magnitude as anthro-

pogenic surface fluxes of CO2

• CO2 transport along the east side of baroclinic waves is systemically unobserved by

satellites due to correlations of rising condensing air, precipitation, CO2, and heat

transport

• CO2 transport by synoptic storms is sensitive to modeling of frontal systems, mois-

ture transport in warm conveyors, and vertical mixing

• Model differences in meridional fluxes of CO2 by synoptic storms is significant,

equal to nearly half of fossil fuel emissions

• Inversion of synthetic satellite data using ensemble like approximation and bias

parameter estimation recovers realistic looking sinks, assuming underlying transport

is unbiased
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• Nearly 100% of sinks are recovered in the Amazon despite large reductions in column

CO2 data due to cloud contamination

• Temporal sampling errors in column CO2 in northern mid-latitudes cause small but

spatially coherent flux estimation errors during summer

• Transport biases are strongly aliased into inverse estimates of sources and sinks

Sensitivity of eddy transport to factors such as storm track position, frontal weather

systems, seasonal tendencies in CO2 mixing ratio and the pattern of seasonal change in

surface CO2 flux over the globe poses a challenging task for inversion modelers. This

study has addressed implications of frontal weather systems for the atmospheric carbon

cycle and demonstrated the need to represent these systems with high fidelity, but could

not link uncertainty of transport by frontal weather systems to a single factor, making

it difficult to make specific recommendations for future modeling efforts. Future studies

would therefore do extremely well to use a global model capable of running at multiple

grid spacings and/or with multiple vertical mixing schemes to examine sensitivity of eddy

transport to (1) vertical mixing with grid spacing held constant and (2) grid spacing with

vertical mixing held constant. Such a model could be applied rather easily in an ensemble

inversion framework, in which an adjoint is not required, to test for aliasing of a single

factor into surface flux errors.

This work has touched on, but not yet begun to fully address, the influence of storm

track position or seasonal change in surface CO2 flux on transport by moist synoptic storms.

It is observed, for example, that storm track position shifts north and south with annular

modes and quite possibly climate change. Using a dry dynamical core of an AGCM, Butler

et al. [2010] show that heating in the tropical troposphere might lead to a poleward shift

of extratropical storm tracks. Enhancement of moist isentropic circulations with global

warming are also possible, as shown in work by [Laliberte and Pauluis, 2010].

Large meridional fluxes of CO2 as discussed in this research are currently possible
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due in large part to the favorable positioning of baroclinic waves with the most season-

ally active biological part of the world. Somewhat remarkably, most of the global land

area resides in this part of the world, making the northern mid-latitudes one of the most

productive regions as well. It seems that the tilt of the planet has provided a mechanism

that simultaneously regulates geophysical fluid dynamics and plant metabolism, while plate

tectonics has arranged land mass in a way that is favorable not only for the carbon cycle,

but people. Responses of the Earth system to dynamical forcing from global warming will

almost certainty cause a shift in the balance between geophysical fluid dynamics and surface

fluxes of CO2.
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