Assimilation, Surface Flux Estimation, and Error Analysis
of Atmospheric COz Observations from Space
Using a Comprehensive Modeling System

Abstract

We propose to analyze GOSAT/Tanso data using a combination of existing models of
CO2 exchanges due to hourly photosynthesis and respiration (Baker et al, 2008),
daily air-sea gas exchange (Doney et al, 2009), biomass burning (GFED, Randerson
et al, 2007), Fossil Fuel Emissions (Gurney et al, 2009), and atmospheric transport
(PCTM, Kawa et al, 2004). This comprehensive system allows direct comparison to
the observed record of both in-situ and remotely sensed atmospheric CO> at hourly
timescales. We have previously demonstrated that a lower-resolution version of the
system has good skill at replicating diurnal, synoptic, and seasonal variations over
vegetated land surfaces (Parazoo et al, 2008). The analysis system will be operated
ona 0.5°x 0.67° grid (Ax ~ 50 km), providing global mesoscale coverage. The
system is driven by meteorological output from the NASA Goddard EOS Data
Assimilation System, version 5. Surface weather from the system drives calculations
of terrestrial ecosystem metabolism (radiation, precipitation, humidity,
temperature) and air-sea gas exchange (wind), with other input data coming from
satellite data products (e.g., fPAR and LAI from MODIS, and ocean color from
SeaWiFS and MODIS).

The result will be estimates of time-varying surface sources and sinks of CO; that
are optimized with respect to in-situ flask and continuous CO2 observations, TCCON
data, GOSAT /Tanso retrievals, MODIS data, emissions inventories, and mechanistic
models. We will use the modeling and analysis system (1) as a “smart interpolator”
of non-satellite CO; observations that can be used to estimate systematic errors in
GOSAT retrievals; (2) to map and interpret sources and sinks; (3) to quantify the
effect of systematic errors in spectroscopic retrievals on source/sink estaimates;
and (4) to establish detection criteria for fossil fuel emissions.

1. Introduction

Despite the loss of the Orbiting Carbon Observatory (OCO) in February 2009, the
global carbon cycle research community has been actively developing improved
systems for analysis of carbon cycle data. The in-situ CO; observing network
continues to expand (especially with respect to continuous observations). The Total
Column Carbon Observing Network (TCCON) measures column abundances of COz and
other greenhouse gases using upward-looking Fourier Transform Spectrometers. Japan’s
Greenhouse Gases Observing Satellite (GOSAT) is collecting data on atmospheric CO>
column abundance, though at somewhat lower precision than was planned for OCO. A
network of nearly 500 sites now reports hourly CO2 exchanges with terrestrial ecosystems
and air-sea gas exchange is estimated using in-situ observations, remote sensing of ocean
color, and numerical modeling. Fossil fuel emissions are estimated with increasing
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fidelity at high resolution in space and time using a combination of traditional
inventories, remote sensing, spatial data, and demand modeling.

We propose to use a comprehensive forward modeling system to simulate variations of
atmospheric CO2 globally using mechanistic descriptions of sources, sinks, and transport
processes. A combination of in-situ and remotely-sensed CO; observations will then be
assimilated into the system to optimize source/sink estimates. The resulting CO; analysis
product (along with comprehensive error covariance statistics) will then be analyzed to
provide information about spatially coherent biases in the GOSAT products, and to help
in the design of future spaceborne CO2 measurements.

2. Model Descriptions
2.1. Simple Biosphere Model (SiB)

We propose to use the Simple Biosphere model (SiB), which is based on a land-
surface parameterization scheme originally used to compute biophysical exchanges
in climate models (Sellers et al., 1986), but later adapted to include ecosystem
metabolism (Sellers et al.,, 1996a; Denning et al., 1996a). The parameterization of
photosynthetic carbon assimilation is based on enzyme kinetics originally
developed by Farquhar et al. (1980), and is linked to stomatal conductance and
thence to the surface energy budget and atmospheric climate (Collatz et al., 1991,
1992; Sellers et al., 1996a; Randall et al., 1996). The model has been updated to
include prognostic calculation of temperature, moisture, and trace gases in the
canopy air space, and the model has been evaluated against eddy covariance
measurements at a number of sites (Baker et al., 2003; Hanan et al., 2004; Vidale
and Stockli, 2005). Revised treatment of root zone hydrology and physiological
stress has resulted in improved simulation of the seasonality of transpiration,
photosynthesis, and ecosystem respiration at tropical sites in the Amazon (Baker et
al, 2008) and Africa (Williams et al, 2007). Other recent improvements include
biogeochemical fractionation and recycling of stable carbon isotopes (Suits et al.,
2005), improved treatment of soil hydrology and thermodynamics, and the
introduction of a multilayer snow model based on the Community Land Model (Dai
et al.,, 2003). Direct-beam and diffuse solar radiation are treated separately for
calculations of photosynthesis and transpiration of sunlit and shaded canopy
fractions, using algorithms similar to those of DePury and Farquhar (1997). The
model is now referred to as SiB3.

Until recently, ecosystem respiration was treated in SiB by scaling a temperature
and a moisture response to achieve net carbon balance at every grid cell in one year
by prescribing the size of a single pool of organic matter. This approach has recently
been replaced by a scheme for allocation, transformation, and decomposition based
on the Carnegie/Ames/Stanford Approach (CASA, Randerson et al., 1997). Stored
photosynthate is allocated to leaves, stems, and roots in fractions that are
constrained by changes in satellite vegetation index (NDVI). Carbon is tracked
through biomass pools and released to the surface as dead litter, woody debris, and
root litter, where it interacts with a microbial pool to produce several pools of soil
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organic matter and CO». The interactive biogeochemistry module has been tested at
dozens of eddy-covariance sites and found to improve simulations of the seasonal
cycle of net ecosystem exchange relative to the single-pool model it replaces
(Schaefer et al, 2008). Following previous work with CASA (van der Werf et al,
2006), we also plan to add a fire module to this model. The incorporation of the fire
module is partly supported by NASA through a subcontract from Goddard Space
Flight Center.

Historically, SiB has used prescribed vegetation parameters derived by remote
sensing (Sellers et al., 1996b). At global scales, this approach allows realistic
simulation of spatial and temporal variations in vegetation cover and state (Denning
et al.,, 1996; Schaefer et al.,, 2002, 2005). At the underlying pixel scale, however,
phenology products derived from satellite data must be heavily smoothed to remove
dropouts and artifacts introduced by frequent cloud cover. An inevitable trade-off
between cloud-induced “noise” in the leaf area and time compositing systematically
stretches the seasonal cycle by choosing data late in each compositing period in
spring, and early in each composite in fall. We have addressed this problem by
developing and testing a prognostic phenology module for SiB (Stockli et al, 2008).
We have assimilated vegetation imagery into the prognostic phenology model to
estimate its parameters (e.g., growing degree day thresholds), rather than forcing it
with the satellite data.

We have developed and testing an explicit treatment of phenology and physiology of
agricultural crops, and parameterized of the crop model using data from flux towers,
experimental farms, and agricultural databases (Lokupitiya et al, 2009). The model
represents fluxes from multiple sub-grid scale “tiles” (e.g., corn, soy, wheat, pasture),
and the revised model matches observed fluxes, leaf-area, and grain yield much
better than the control (Corbin, 2008).

2.2. Global Fire Emissions Database (GFED)

Emissions of CO2 due to biomass burning will be specified using the Global Fire
Emissions Database (GFED v2.1, Randerson et al, 2007). The 8-day emissions data
set was compiled using satellite data and the Carnegie-Ames-Stanford Approach
(CASA) biogeochemical model. Burned area from 2001-2004 was derived from
active fire and 500-m burned area data from MODIS (Giglio et al., 2006). ATSR
(Along Track Scanning Radiometer) and VIRS (Visible and Infrared Scanner)
satellite data were used to extend the burned area time series back to 1997 (Arino
et al.,, 1999; Giglio et al., 2003; Van der Werf et al., 2004). Fuel loads and net flux
from terrestrial ecosystems were estimated as the balance between net primary
production, heterotrophic respiration, and biomass burning, using time varying
inputs of precipitation, temperature, solar radiation, and satellite-derived fractional
absorbed photosynthetically active radiation. Tropical and boreal peatland
emissions were also considered, using a global wetland cover map (Matthews and
Fung, 1987) to modify surface and belowground fuel availability.
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2.3. Ocean Circulation and Biogeochemistry

Air-sea gas exchange will be a multi-decade (1979-2004) hindcast experiment
conducted with the Community Climate System Model (CCSM-3) ocean carbon
model (Doney et al, 2009). The CCSM-3 ocean carbon model incorporates a multi-
nutrient, multi-phytoplankton functional group ecosystem module coupled with a
carbon, oxygen, nitrogen, phosphorus, silicon, and iron biogeochemistry module
embedded in a global, three-dimensional ocean general circulation model. The
model is forced with physical climate forcing from atmospheric reanalysis and
satellite data products and time-varying atmospheric dust deposition. Data-based
skill metrics have been used to evaluate the simulated time-mean spatial patterns,
seasonal cycle amplitude and phase, and subannual to interannual variability.
Evaluation data include: sea surface temperature and mixed layer depth; satellite-
derived surface ocean chlorophyll, primary productivity, phytoplankton growth rate
and carbon biomass; large-scale climatologies of surface nutrients, pCO2, and air-sea
CO2 and O flux; and time-series data from the Joint Global Ocean Flux Study
(JGOFS).

2.4. Atmospheric Tracer Transport (PCTM)

Low Resolution Transport (2.5 Lon x 2.0 Lat)

The Parameterized Chemistry Transport Model
(PCTM) will be used for forward global
simulations of CO; transport (Kawa et al., 2004;
Parazoo et al, 2008). This provides a diagnostic
tool for studying synoptic interactions among
weather and surface CO2 flux. Transport fields
will be provided by the NASA Goddard EOS Data
Assimilation System, version 5 and include 6-
hourly analyzed winds, temperatures, and
convective/diffusive parameters for off-line
transport (Rienecker et al., 2008). The GEOS-5
atmospheric general circulation model maintains
the finite-volume dynamics (Lin, 2004) used for
oo ow a0ow son son 7on sn s sw s GEOS-4 and found to be effective for transport in
2 ®m  the stratosphere and troposphere. The physical
Figure 1: Simulated Xco for March 5, parameterizations include four major groups of
2004 using two different grids processes and their submodules: moist processes,
radiation, turbulent mixing, and surface
processes. Moist convective mass flux is calculated with a relaxed Arakawa-Schubert
scheme (Moorthi and Suarez, 1992). Subgrid scale vertical processes also include a
turbulent mixing scheme. GEOS-5 uses a new grid point statistical interpolation
assimilation method that is a three-dimensional variational analysis applied in grid-
point space.
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The comprehensive forward modeling system has been tested for multiyear
simulations on both a 2°x2.5° (latxlon) and 0.5°x0.67° grid, driven by both GEOS-4
and GEOS-5 analyses (Figs 1 and 2). Synoptic variability is very well simulated on
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Figure 2: Lagged correlation analysis of
synoptic variations of simulated and
observed CO; at 12 in-situ stations
(locations shown above). Abscissa is time
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the high-resolution grid, providing global mesoscale coverage and excellent fidelity
to day-to-day variations observed at in-situ stations (Fig 2).

Global Flux Estimation by Ensemble Data Assimilation

We will use the component models described above to obtain an improved analysis
of global sources and sinks of CO> at regional scales. For the first time, this analysis
will include mechanistic treatment of all components of the carbon cycle (fossil
fuels, air-sea gas exchange, biomass burning, photosynthesis, and respiration) and
their error covariances, constrained by multiple data streams.

We will separate the well-understood “fast” processes driven by environmental
forcing (temperature, solar radiation, precipitation, wind speed) from “slow”
processes driven by less-understood biases in biogeochemistry and emissions. The
total flux of CO; to the atmosphere from any grid cell at any time can be written as:

FT(X,y,Z) = ﬁFF(xsy)FF(x’y’t) + ﬁFi,e(x,y)Fire(x,y,t)
+ﬂRESP(X’y)RESP(X’y,t)_ﬁGpP(x’y)GPP(xayJ) EQ1
+ﬂ0c‘ean (x’y)Ocean(x’y’t)

where x and y denote the spatial coordinates and t represents the time, which is at
hourly resolution. Here FF, Fire, RESP, GPP, and Ocean refer to the hourly gridded
flux estimates described above. The 8’s represent persistent multiplicative biases in
the grid-scale component fluxes. A persistent bias in photosynthesis might result
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(for example) from underestimation of available nitrogen, forest management, or
agricultural land-use, whereas a persistent bias in respiration might result from
overestimation of soil carbon or coarse woody debris. Sub-daily variations in the
simulated component fluxes respiration and GPP are primarily controlled by the
weather (especially changes in radiation due to clouds and the diurnal cycle of solar
forcing), whereas seasonal changes are derived from phenological calculations
parameterized from satellite imagery. Fine scale spatial variations are driven by
changes in vegetation cover, soil texture, and soil moisture. It is reasonable to
assume that the biases vary much more slowly than the fluxes themselves. Our
method allows for component fluxes to vary on hourly, synoptic, and seasonal time
scales, but assumes that biases in these fluxes persist for a period of approximately
2 months.

Optimization of the bias vector is accomplished using the Maximum Likelihood
Ensemble Filter (MLEF, Zupanski, 2005; Zupanski et al, 2007; Lokupitiya et al,
2008). Important advantages of the MLEF are (1) that it can operate on fully
mechanistic forward models of the component fluxes without requiring the
derivation of their adjoints, and (2) it can be efficiently integrated in parallel on
large computer clusters. The outcome of this calculation will be time-resolved maps
of CO2 sources and sinks at grid scale with mechanistic attribution that also
optimally match observations of many kinds. T
Additionally, the MLEF will allow us to quantify T
uncertainty in sources and sinks.

We have tested the ensemble assimilation system using
synthetic OCO data. Multiplicative biases (b) were
specified to represent reasonable spatial patterns
associated with CO2 fertilization, atmospheric nitrogen
deposition, forest regrowth, boreal growing season
changes, and a saturating sink in the Southern Ocean.
Random grid-scale perturbations were added to each of
these biases in each month, and synthetic CO2 data were
created. Atmospheric columns were then sampled along
the OCO orbit and masked for subgrid-scale clouds using

NCEP-2 reanalyses. The resulting observation density iS  Fjgure 2: Sampling density
shown in Fig 3. for OSSE

A constant prior bias of B(x,y,t)=0.0 was assumed for all flux components, and new
biases were estimated every month, with covariance propagation. Resulting fluxes
were well-estimated (Fig 4) with excellent reduction of uncertainty over land. Ocean
fluxes were somewhat less well-determined, due to the weaker fluxes there (Fig 5).
One advantage of the MLEF system is that we are able to “post-aggregate” fluxes and
their uncertainties a posteriori using the error covariance statistics that result from
the optimization. Doing this shows excellent retrieval of annual fluxes over
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TransCom regions (Fig 6). Note that prior fluxes over all land regions were precisely
zero due to the net annual balance architecture of SiB.

Land Retrieval

Land Pseudo Tru
i

F A~
3
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Figure 3: "True" and estimated fluxes (LMol CO2 m2 s'1) recovered in OSSE
3. Specific Research Activities Proposed
3.1. Error analysis of GOSAT Level 2 CO2 products

We propose to use our modeling system (SiB + CASA + GFED + FF + Ocean +
GEOS5/PCTM) as a "smart interpolator” of the TCCON and in-situ observations, and
use resulting model output to evaluate GOSAT L2 product. Specifically, we will
analyze the flask sampling plus continuous in-situ plus TCCON observations using
our ensemble data assimilation system. This will produce a global a posteriori
estimate of atmospheric CO; which is available everywhere and optimized with
respect to available non-satellite observations. The analysis system also produces
error covariance statistics for every estimated CO; value.

We will then sample this COz analysis to estimate column CO2 (with an associated
error estimate) for every GOSAT L2 retrieval, which we will compare to the actual
satellite retrievals. Of course, the analyzed product cannot be considered the truth,
but it should be considered a comprehensive interpolation of available observations
using mechanistic process-based models.
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We will then analyze the differences between our analyzed CO2 product and the
GOSAT L2 retrievals, focusing especially on spatial and seasonal patterns in model-

Figure 6: Post-aggregated flux estimates by
TransCom region for OSSE compared to pseudo
truth (inset shows regions).

Note all land (but not ocean) priors were zero.

Figure 4: Uncertainty reduction (percent) relative to
prior for OSSE
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satellite differences. These will be interpreted in terms of aerosol optical depth, the
presence and character of subpixel-scale cloud, atmospheric path length, solar
illumination, surface albedo, and viewing angle effects that may introduce
systematic error into the GOSAT retrieval.

Finally, this phase of the research will include close collaboration with the rest of
the retrieval community in characterization of both random and systematic errors
in retrieved column COz2, to allow unbiased source/sink retrieval by transport
inversion.

3.2. Comprehensive source/sink retrieval and analysis

We will assimilate the available in-situ, TCCON, and GOSAT L2 data into our
comprehensive forward modeling system, optimizing the variable multiplicative
bias terms (Eq 1). This will yield obtain time-varying maps of GPP, ecosystem
respiration, fossil fuel emissions, biomass burning emissions, and air-sea gas
exchange on a ~ 50 km grid globally on an hourly basis. These time-varying maps
will be made available online for other researchers to use, and will be compared in
detail with other estimates and analyses. These estimates will also be compared
through the inversion intercomparison project proposed by David Baker and his
colleagues, assuming that activity receives support. Otherwise we will seek to
establish intercomparison through the international TransCom activities, with
which the PI has been closely involved for the past 15 years.

Source/sink estimates will be evaluated against inventory data, aircraft
observations, flux towers, and other available data sets. Interpretations of patterns
in sources and sinks (for example, by in response to interannual climate variations)
will be conducted as part of the larger carbon cycle community.

3.3. Impact of realistic satellite retrieval errors on source/sink estimates

We will use MLEF inversions of synthetic observations to investigate the potential
impact of realistic patterns of spectroscopic retrieval errors on errors in sources
and sinks. Mechanistic patterns of time- and space-varying sources and sinks (e.g.,
due to CO: fertilization, nitrogen deposition, forest regrowth, melting permafrost, or
changes in ocean circulation) will be prescribed in the forward modeling system to
obtain corresponding synthetic CO2 observations. These will then be perturbed by
assumed spectroscopic errors in column COz due to atmospheric aerosol, subpixel-
scale cloud, viewing angle, surface albedo, and other likely sources of satellite
retrieval error. These incorrect synthetic observations will then be used in the MLEF
system to estimate bias fields (Eq 1) to translate realistic retrieval errors in CO2
(ppm) to errors in retrieved sources and sinks (GtC/month). It is anticipated that
these simulation experiments will be useful to inform the design of future CO>
missions as well as to better understand likely errors in real carbon cycle analyses.

9
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3.4. Quantify ability of satellite CO2 to detect errors in fossil fuel emissions

Observational data currently or soon available are sufficient to detect fossil fuel
emissions from large sources, but it is debatable at what scales these emissions are
better quantified by traditional inventory reporting or atmospheric inversion. To be
useful for fossil fuel emission analysis in the future, transport inversions of satellite
CO2 retrievals must be able to detect not just the presence of fossil CO; plumes, but
rather errors in our prior estimates. We propose to use our modeling and
assimilation system in pseudodata mode to quantitatively analyze our ability to
detect different levels of error in fossil fuel emissions maps. For example, we will
prescribe a multiplicative error in certain parts of the world that might be
associated with intentional underreporting of fossil fuel emissions in particular
countries, and see whether the analysis system could detect that error. We will do
this using both the existing space/time patterns of emissions and also experiment
with detection of unreported large point sources that are not in the prior. We will
use observing system simulations to analyze the degree of accuracy and precision
needed to detect each kind of underreporting (ubiquitous scaling or unreported
sources).

4. Synergy with/relationship to other research

Other research being conducted in the Department of Atmosperhic Science at CSU
(and in the related Cooperative Institute for Research in the Atmosphere, CIRA) are
closely related and synergistic with the proposed work. See the Current and Pending
Research document for details. Land and coupled model development is strongly
supported by NSFunder the Center for Multiscale Modeling of Atmospheric
Processes (CMMAP). Ongoing collaborations with NASA Goddard (PI S. Randall
Kawa) and GMAO (PI Steven Pawson) support development and evaluation of the
PCTM with fluxes from SiB. A new project funded by NASA Terrestrial Ecosystems is
scheduled to start in January 2011, leading to optimization of biomass and carbon
pools rather than unknown biases (state variables rather than parameters) using
SiB and PCTM. Regional experiments over North America using elements of the
modeling system described herein are supported by DOE and NOAA. The Principal
Investigator is one of the original organizers of the international TransCom
inversion intercomparison activity, and continues to participate actively therein.

The global mesoscale version of PCTM (0.5°x0.67° grid) requires about 6 CPU days
to integrate one simulated year. Large ensembles run in a “perfectly parallel”
arrangement, so require no additional wallclock time, but do require large numbers
of processors. We will seek NASA supercomputer time to perform the required
calculations. We have been very successful in obtaining time in the past. We request
powerful desktop workstations and large disk arrays for storing and analyzing
simulation output.

10
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