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[1] Representing spatially varying precipitation for current grid length scales used in
General Circulation Models (GCMs) is a continuing challenge. Furthermore, to fully
capture the hydrologic effects of nonuniform precipitation, a representation of soil
moisture heterogeneity and distribution of spatially varying precipitation must exist
within the same framework. For this study, the explicit and sampling methods of Sell-
ers et al. (2007) are tested off-line using the Simple Biosphere Model (SiB3) in an arid,
semiarid, and wet site, and are numerically compared to the bulk method, which is
currently used in GCMs. To carry out the numerical experiments, an arbitrary grid
area was defined by (1) a single instance of SiB3 (bulk method), (2) 100 instances of
SiB3 (explicit method), and (3) less than 100 instances of SiB3 (sampling method). Pre-
cipitation was randomly distributed over fractions of the grid area for the explicit and
sampling methods, while the standard SiB3 exponential distribution relating precipita-
tion intensity to the grid area wet fraction was used in the bulk method. Comparing
the sampling and bulk method to the explicit method indicates that 10 instances of
SiB3 in the sampling method better captures the spatial variability in soil moisture and
grid area flux calculations produced by the explicit method, and deals realistically with
spatially varying precipitation at little additional computational cost to the bulk

method.
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1. Introduction

[2] It has been shown that the representation of soil
moisture heterogeneity in General Circulation Models
(GCMs) is very important for modeling earth’s climate
system [e.g., Ronda et al., 2002; Ryu and Famiglietti,
2006]. Aside from the oceans, soil moisture is another
slowly varying component that influences weather and
climate through its impact on evaporation and other
surface energy fluxes [Schar et al., 1999; Koster et al.,
2004]. Furthermore, studies have shown that in conti-
nental midlatitude summers, oceanic impacts on precip-
itation are small relative to soil moisture [Koster et al.,
2000, 2002, 2003, 2004, 2006; Guo et al., 2006]. With
the lack of soil moisture heterogeneity in early climate
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models, the use of a single soil moisture value for
the entire grid area (bulk approach) along with the
nonlinear relationship between soil moisture and eva-
potranspiration has caused inaccuracies in the calcula-
tion of the grid area evapotranspiration rate [Sellers
et al., 2007]. From equation (1), the grid average of the

S(x) #1(x) (D

effects of the heterogeneous variable x on the nonlinear
function f is not equivalent to the grid average of the
heterogeneous variable x applied to the nonlinear func-
tion f[Giorgi and Avissar, 1997]. To illustrate this prob-
lem, when the value of the water stress factor relating
the area-averaged soil moisture to evapotranspiration
(e.g., Figure 1) lies on the most nonlinear part of the
curve, this can lead to inaccuracies in the calculation of
the grid area evapotranspiration rate during a precipita-
tion event (e.g., small-scale or convective storm) as a
result of a significant jump in the value of the water
stress factor. To mitigate this problem [see Avissar,
1992; Giorgi and Avissar, 1997; Essery et al., 2003; Sell-
ers et al., 2007], tiling (patches) and binning approaches
have been introduced to represent land surface hetero-
geneity by dividing the grid area into separate fractional
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Water Stress Factor As A Function Of Total Plant Available Water (PawTot)
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Figure 1. Water stress factor plotted as a function of
total plant available water (PawTot, see section 3.2) for
the semiarid site. This figure was made using PawTot
values ranging from wp to total saturation (see section
3.2, equations (13-16)), and soil parameters such as fc,
wp, etc. are derived from literature values and standard
SiB3 parameters for a short vegetation/C4 grassland
(see section 3.1).

areas (each area can be represented by a different vege-
tation type, soil moisture value, etc.), and since energy
fluxes are calculated separately for each fractional area
before calculating a grid average, this allows for an
increase in sampling along the nonlinear curve relating
soil moisture and evapotranspiration. Furthermore,
other approaches have been introduced and represent
subgrid-scale heterogeneity through the integration of
processes over analytical or empirical probability density
functions (PDFs). Regardless of the method used to rep-
resent land surface heterogeneity, it is important to note
that using a spatially varying land surface with evenly
distributed precipitation does not completely describe
the spatial variability (and vice versa), and for the case of
soil moisture heterogeneity, representing the distribution
of spatially varying precipitation is very important, but is
poorly characterized in GCMs.

[3] In a study done by Dickinson and Henderson-
Sellers [1988], the Biosphere-Atmosphere Transfer
Scheme (BATS) was used to evaluate the climatic
impacts of the deforestation of the Amazon Basin, where
simulated interception loss for the entire basin, when
compared to interception loss measured at a single basin
site, showed overestimations of about 150%. Dickinson
[1989] explained that the overestimation of surface net
radiation and a large canopy storage capacity were the
sources for the high interception loss. However, in
another study, Shuttleworth and Dickinson [1989] sug-
gested that a much more serious source of error was the
neglect of spatial variability in precipitation. Currently
in GCMs, large-scale (frontal or stratiform) and small-
scale (convective) precipitation is predicted as a grid
area average or a single grid area precipitation value for
every time step. The even distribution of the area-
averaged large-scale precipitation rate is sufficient, but
evenly distributing the area-averaged small-scale precipi-
tation rate is problematic and decreases the physical
realism of small-scale events that alter the balance

between evapotranspiration and runoff [Pitman et al.,
1990]. A number of studies have explored the disaggre-
gation of precipitation in climate models [Sato et al.,
1989b; Pitman et al., 1990; Gao and Sorooshian, 1994,
White et al., 1997; Onof et al., 1998; Arora et al., 2001;
Hahmann, 2003; Tang et al., 2007], and many have
reported improvements in simulated hydrology and
changes in the partitioning of energy fluxes.

[4] For the case of the Simple Biosphere Model (SiB3),
the precipitation disaggregation method of Sato et al.
[1989b] has been implemented for the distribution of
small-scale precipitation. The precipitation intensity
determines what fraction of the grid area receives precipi-
tation based on an exponential distribution. Unfortu-
nately, due to the lack of land surface heterogeneity,
precipitation reaching the land surface from a fraction of
the grid is evenly distributed within the entire soil col-
umn, and does not completely capture the hydrological
effects of nonuniform precipitation. To capture the full
effect of precipitation variability in SiB3, it is clear that a
representation of land surface heterogeneity and an
improved distribution of precipitation must exist within
the same framework. Therefore, in this study, we focus
on improving the representation of soil moisture hetero-
geneity and spatially varying precipitation at little addi-
tional computational cost to the bulk method (see
section 3.4) by applying the methods of Sellers et al.
[2007], to SiB3. Section 2 gives a brief description of
SiB3, methods are described in section 3, results are dis-
cussed in section 4, and section 5 has concluding remarks
as well as future work related to this research.

2. The Simple Biosphere Model (SiB3)

[5] The Simple Biosphere Model (SiB3) is based on a
land-surface parameterization scheme originally used to
compute biophysical exchanges of energy, water, and
momentum in climate models [Sellers et al., 1986], and
later adapted to include ecosystem metabolism [Sellers
et al., 1996a; Denning et al., 1996]. The parameteriza-
tion of photosynthetic carbon assimilation is based on
enzyme kinetics originally developed by Farquhar et al.
[1980], and is linked to stomatal conductance and
thence to the surface energy budget and atmospheric
climate [Collatz et al., 1991, 1992; Sellers et al., 1996a;
Randall et al., 1996]. The model has been updated to
include prognostic calculation of temperature, mois-
ture, and trace gases in the canopy air space [Vidale and
Stockli, 2005], and the model has been evaluated
against eddy covariance measurements at a number of
sites [Baker et al., 2003; Hanan et al., 2004; Baker et al.,
2008]. Direct-beam and diffuse solar radiation are
treated separately for calculations of photosynthesis
and transpiration of sunlit and shaded canopy frac-
tions, using algorithms similar to those of De Pury and
Farquhar [1997]. Other recent improvements include
biogeochemical fractionation and recycling of stable
carbon isotopes [Suits et al., 2005], improved treatment
of soil hydrology and thermodynamics, and the intro-
duction of a multilayer snow model based on the Com-
munity Land Model [Dai et al., 2003; Stockli et al.,
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2008a], a prognostic phenology algorithm that assimi-
lates vegetation imagery [Stdockli et al., 2008b], the bio-
geochemical cycling of carbon among decomposing
organic pools [Schaefer et al., 2008], and the ecophysiol-
ogy of corn, soy, and wheat crops [Lokupitiya et al.,
2009]. The model is now referred to as SiB3.

3. Methods

3.1.

[6] Derived from an integration of satellite data (e.g.,
vegetation parameters), literature values and standard
SiB3 parameters (e.g., soil parameters) [Sellers et al.,
1996b], numerical simulations for an arid, semiarid, and
wet climate region (hereafter called sites) were used in
this study for a 2 month period. Each site was forced
with meteorology from a US city that best described the
site climatology (sites do not explicitly represent those
cities), and was compiled from a combination of obser-
vations and stochastically produced from a weather
generator. The arid site is a broadleaf shrub and bare
soil mix forced with meteorology from Phoenix, AZ
with a total of 50.8 mm of precipitation, the semiarid
site is a short vegetation/C4 grassland forced with mete-
orology from Oklahoma City, OK with a total of 177.9
mm of precipitation, and the wet site is a broadleaf and
needleleaf tree mix forced with meteorology from Baton
Rouge, LA with a total of 302.77 mm of precipitation.

[7] Since meteorological data used to force SiB3 (air
temperature (K), vapor pressure (Pa), atmospheric sur-
face pressure (Pa), wind speed (m/s), short wave radiation
(W/m?), long wave radiation (W/m?), and small-scale and
large-scale precipitation (mm/s)) were not readily avail-
able at the necessary temporal and spatial resolution (30
min temporal resolution and a spatial resolution of a
point or single weather station observation) for each loca-
tion, 30 min point observations (or single weather station
observations) from the Atmospheric Radiation Measure-
ments (ARM) Program flux tower site (data available
from Ameriflux Website: ameriflux.lbl.gov/), located in
north-central Oklahoma, were adjusted to create six
instances of July meteorology for each site (6 instances X
3 sites = 18 total July meteorological sets). This was done
for the purpose of simulating spatially varying meteorol-
ogy (i.e., at each site, all six sets of meteorology occurred
at the same time, but over different fractions of the grid
area), and to complete the 2 month (62 days) duration of
the study each set of meteorology was used to force both
months. Adjustments were made to ARM site observa-
tions from July 2003 (arbitrarily chosen), using the
Weather Generator (WGEN) program [Richardson,
1981; Richardson and Wright, 1984]. Therefore, from the
single ARM site observation set from July 2003, 18 sets
of meteorology were created where each site had six
meteorological sets derived from a combination of mete-
orology from the ARM site observation set and stochas-
tically produced for a US city that best described the site
climatology using the WGEN program.

[8] The WGEN program [Richardson, 1981; Richard-
son and Wright, 1984] is a stochastic weather generator
that calculates point (or weather station) values of daily

Description of Sites

precipitation (inches), maximum temperature (°F), mini-
mum temperature (°F), and daily averaged short wave
radiation (ly) with two user options. With the first
option, daily values of the four variables are produced
for a specified number of years with program supplied
statistical data (statistical data are derived from actual
weather station data corresponding to the specified site),
and with option two, the program reads user supplied
values of precipitation and the three other variables are
calculated based on the user and program supplied data.
Using option one for this study, the model first generates
precipitation as an independent variable, while the other
three variables are calculated based on the wet or dry
status of the day. The wet or dry status of each day is
determined using a first-order Markov chain model and
the precipitation amount on a wet day is generated using
a two-parameter gamma distribution. The Markov
chain model only depends on the precipitation status of
the previous day (wet or dry), where a wet day is defined
as a day with a rainfall measurement greater than or
equal to 0.01 in. [Haan, 1977]. Finally, the procedure for
generating daily values of short wave radiation, maxi-
mum, and minimum temperatures is based on the
weakly stationary generating process [Matalas, 1967].
Generated variable values will be close to monthly
means obtained from actual data, however, due to tem-
poral and spatial smoothing from the model or topogra-
phy and other factors, a correction procedure is offered
for temperature and precipitation output.

[9] For the meteorological adjustments to ARM site
observations for July 2003, the observed minimum and
maximum daily temperatures were adjusted to WGEN
output, and the remainder of the temperatures for that
day, were adjusted to fit between the new minimum and
maximum temperature. Short wave radiation was
adjusted by multiplying the observed short wave radia-
tion values by the ratio of the WGEN daily averaged
short wave radiation to the observed daily averaged
short wave radiation. Precipitation had three possible
adjustments, the first was for the case of observed precip-
itation and precipitation generated by WGEN, the sec-
ond was for the case of observed precipitation and no
precipitation generated by WGEN, and the third was for
the case of no observed precipitation and precipitation
generated by WGEN. For the first case, adjustments
were made by multiplying the observed precipitation val-
ues by the ratio of daily WGEN precipitation to the
daily sum of observed precipitation, case two required
setting the values of observed precipitation to zero, and
the third case divided daily WGEN precipitation by
four, creating a 2 h precipitation event that occurred at a
randomly chosen time of the day. Despite the different
precipitation rates and times of occurrence, all six 1
month meteorological sets received the same amount of
monthly precipitation. Fractions of the grid area
received the same meteorology (i.e., at each site, all six
sets of meteorology occurred at the same time, but over
different fractions of the grid area), and to avoid
subgrid-scale variability within subgrid-scale variability
within SiB3, only the large-scale precipitation distribu-
tion option was used for the explicit (see section 3.3) and
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sampling (see section 3.5) methods, while in the bulk
method (see section 3.4) the standard exponential distri-
bution (see sections 1 and 3.2), where rainfall intensity
determines the wet fraction of the grid area, was used.

3.2. Diagnostic Variable

[10] The diagnostic variable used for applying the
methods of Sellers et al. [2007] is now presented. Total
plant available water (PawTot, kg/m?) is a SiB3 variable
that is dependent on the saturation of the soil column
and is used to diagnose the water stress factor for the
vegetation canopy. As the soil column saturation
changes over time, this is reflected in PawTot, thus, it is
the diagnostic variable used in this study. For the calcu-
lation of PawTot in SiB3, we begin with the surface
hydrology. To account for the hydrologic effects of
small-scale and large-scale precipitation, two precipita-
tion distributions are used in SiB3. Rainfall is distrib-
uted according to equation (2), where /., is the
relative amount of small-scale (¢) or large-scale (p)

I(yp(X) zac.peib“pX"_cc.p 2

precipitation as a function of the fractional area (x) and
the small-scale or large-scale constants a., b, ¢., a,, b,
and ¢, [Sato et al., 1989Db]. Since both types of pre-
cipitation can occur together, the total amount of pre-

cipitation is given in equation (3), where P is the total
PIxy=(P.a.+Pyay)e "X +(Pocc+ Pycy) 3)

precipitation during a time step and P, and P, are
small-scale and large-scale precipitation rates (mm).
Therefore, with this distribution scheme, the large-scale
precipitation rate is distributed evenly across the grid
area, but the intensity of the small-scale precipitation
rate determines what fraction of the grid area receives
precipitation (area gets smaller as the rainfall rate
intensity increases). As mentioned in section 1, once pre-
cipitation reaches the land surface, it is evenly distrib-
uted within the entire soil column, making this scheme
unrealistic for the average small-scale precipitation
rate, but satisfactory for the average large-scale precipi-
tation rate. The dynamics of precipitation intercepted
by the vegetation canopy is described in equation (4),

oM.

where M, is the amount of canopy interception, P/, is
the precipitation and D is the canopy drainage rate
[Sato et al., 1989b; Sellers et al., 1996a]. Defining evap-
orative fluxes [see Sellers et al., 1996a], equation (5)
describes the evaporation (AE) rate from the wet

(¢"(Te)—ea) (pH20)cp
Ty Y

2Ei= )

portion of the vegetation canopy, where ¢*(7.) is the
saturation vapor pressure at the canopy temperature, e,

is the canopy air space (CAS) vapor pressure, r; is the
bulk canopy boundary layer resistance, pH,O is the
density of water, ¢p is the specific heat of air, and y is
the psychrometric constant. The surface interception
storage is calculated as the sum of the inputs (D) and
the outputs (runoff, infiltration, evaporation). Evapora-
tion from surface interception (4E,;) is calculated using
equation (6), where T, is the ground temperature, r, is

“(T,)—ea (pPH20
proamL fb) (o : )P, (©6)

the aerodynamic resistance between the ground and
CAS, and w, is the ground wetness fraction. Overland
flow is generated for the fraction of the grid where the
residual rainfall rate exceeds the locally derived soil
hydraulic conductivity. Evaporation from the topsoil
layer (1E,) is calculated using equation (7), where /,;
is the relative humidity of the soil pore space and r,; is
the soil surface resistance.

JEy= hsoine*(Tg)—eq (pH20)cp

(I=wyg) (7
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[11] Moving into the subsurface, plant available water
(Paw, volumetric) is calculated for soil layers (i = 1, I).

4
PLIW,': [W} —Wwp (8)

containing roots using equation wp is the wilting point
(volumetric), W;is the soil water mass per unit area (kg/
m?) for the ith soil layer, and dz is the thickness of the
ith soil layer (m). Water is removed from cach soil layer
based on the root fraction in that layer and vegetation
stress increases rapidly as soil moisture drops to the wp.
This response is realistic in plants, and with this
approach in SiB3, we see a gradual reaction in soil
moisture stress as the soil moisture decreases [Baker
et al., 2008; Harper et al., 2010]. Equation (9) is used to
govern the evolution of soil water mass per unit area

GW,-:_@
ot 0z

- (froor/lEct) + Mi/ (9)

[Sellers et al., 1996a; Dai et al., 2003]. For the ith
soil layer, W; is the soil water mass (kg/mz), Jroor 18 the
root fraction, M is the mass rate of melting (+) or
freezing (—) of soil ice, and ¢ is the water flow. Transpira-
tion (AE,,) is calculated using equation (10)

e (T,)—e, (pH20)cp
AE. = 1—w,
TWevz o 0

where ¢*(T,) is the saturation vapor pressure at the can-
opy temperature, e, is the canopy air space (CAS) vapor
pressure, cp is the specific heat of air, w,. is the canopy wet
fraction, g. is the canopy conductance, r, is the bulk
canopy boundary layer resistance, and 7y is the

(10)
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psychrometric constant. Darcy’s law expresses the vertical
flow within soil layers (equation (11)). K is the hydraulic

)

conductivity, s is the soil negative potential, and the
+1 term accounts for gravitational drainage of water
out of the bottom of the soil column to create base flow
is simply the hydraulic conductivity of layer 10 (equa-
tion (12)), and any excess water from saturated soil

(11)

q10=Kio 12)
layers is also added to base flow. There is no horizontal
exchange of hydrologic fluxes between grid cells in SiB3,
and once a grid cell soil column has saturated, it is
assumed that runoff flows directly into the ocean. Paw-
Tot is calculated using equation (13). The fraction of
PawTot (PawFrac, unitless) that is available to plants

PawTOZZZ [(Paw;)(dz;)(pH20)] (13)

i=1

is calculated as the ratio of PawTot to the maximum
amount of PawTot (PawMax, kg/m?) using equations
(14) and (15), where fc is the field capacity (volumetric).

1
PawMax=> " [(fe=wp)(dz;)(pH20)] (14)
i=1
PawTot

PawFrac= ————
awirac PawMax

(15)

Finally, soil moisture deficit below fc for each layer is
aggregated and total column water stress or the water
stress factor is calculated using equation (16), where S
is the shape parameter, which currently has a value of

(1+S)(PawFrac)
(S+PawFrac)

Water_Stress_Factor=

(16)

0.2 [Baker et al., 2008]. For a completely dry soil col-
umn up to wp, the water stress factor has a value of 0.1,
and from fc to a completely saturated soil column, the
value is 1.0. Water stress is maximized when the value
approaches 0.1 and there is no stress at and beyond fc.
The idea for this study is to increase the sampling along
the highly nonlinear curve of the water stress factor
plotted as a function of PawTot (see Figure 1) when cal-
culating grid area evapotranspiration rates and soil wet-
ness to avoid unrealistic jumps during precipitation
events at little additional computational cost to the
bulk method (see section 3.4).

3.3. Explicit Method

[12] Following the methods of Sellers et al. [2007], an
arbitrary grid area normalized to an area of unity (1.0)
was divided into 100 cells of equal area and randomly

initialized with a Gaussian PawTot distribution
(Figure 2). In the initial distribution, with all values
lying on the most nonlinear part of the curve represent-
ing the water stress factor as a function of PawTot (see
Figure 1), each cell was represented by an instance of
SiB3 and soil column saturation representative of the
PawTot value assigned to that cell (it is important to
note that soil parameters such as fc, wp, etc. were differ-
ent at each site, see section 3.1). At each location, each
of the six sets of July meteorology (see section 3.1) was
randomly assigned a fractional area. Daily precipitation
events from all six sets were forced to occur on ran-
domly selected cells following Hahmann [2003], until the
preassigned fractional area for every set was met (recall,
the conventional exponential distribution relating the
precipitation rate to the grid area wet fraction was not
used with this method to avoid subgrid-scale variability
within subgrid-scale variability). Every fractional area
had its own “atmosphere” following the approach of
White et al. [1997], but in this study, all meteorological
forcings (not just precipitation as in White et al. [1997])
were different. To illustrate this, let us say that on day
two, precipitation occurred with three of the six sets of
meteorology. The three wet instances would first be dis-
tributed randomly across the grid area until the preas-
signed fractional areas for each set were met, and then
the remaining three instances of meteorology (dry)
would be randomly assigned among the unoccupied
cells until those preassigned fractional areas were met.
[13] Every instance of SiB3 was forced with its
assigned meteorology until the next daily precipitation
event was observed and the random distribution was
repeated. To complete the 2 month (62 days) duration
of the study each set of meteorology was used to force 2
months (preassigned fractional areas remained the same
for the second month, but each set was still randomly
distributed across the grid area) and for every time step
(10 min time step with hourly output) 100 instances of
SiB3 took place. Grid averages were calculated by the
integration of fluxes across all instances of SiB3, and
individual cell fluxes and runoff did not interact with
neighboring cells and were assumed to go directly into
the atmosphere and ocean, respectively. As in Sellers

Gaussian PawTot Distribution
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Figure 2. Initial Gaussian distribution of PawTot cen-

tered on a mean value of 129.57 kg/m? for the semiarid
site.
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et al. [2007], the explicit method was used as the stand-
ard for judging the other methods as it explicitly
resolved subgrid-scale variability. Clearly, this method
is computationally expensive and is not practical for
global GCM simulations.

3.4. Bulk Method

[14] The initial PawTot distribution used in the
explicit method was area averaged to give a single Paw-
Tot value for the entire grid area (equation (17)).

(PawTot) =J(PawTot)da (17)

A

The grid area was defined by a single instance of SiB3
with a soil column saturation representative of the area-
averaged PawTot value, and was forced with a single
meteorological data set compiled from the area-
averaged meteorology from the six meteorological data
sets used in the explicit method. The conventional expo-
nential distribution relating the precipitation rate to the
wet fraction of the grid area was used with this method.
As mentioned in section 1, once precipitation reaches
the land surface, it is evenly distributed within the entire
soil column, making this scheme unrealistic for the
average small-scale precipitation rate, but satisfactory

for the average large-scale precipitation rate. This
method only required a single model run for every time
step and is computationally inexpensive.

3.5. Sampling Method

[15] The alternative binned method of Sellers et al.
[2007] or sampling method is a modified version of the
explicit method. The initial PawTot distribution was
sorted and averaged based on the number of bins (j)
that were used. Using 10 bins, every 10 values of the
sorted (ascending order) PawTot distribution were aver-
aged giving 10 PawTot values representative of the dri-
est bin up to the wettest bin. The grid area was then
divided into 10 equal fractional areas (@;) and each frac-
tional area was represented by an instance of SiB3 and
soil column saturation representative of its assigned
PawTot value. Daily meteorological forcings were dis-
tributed based on the percentage of the grid area that
received precipitation in the explicit method, where the
number of bins being used multiplied that percentage
and that value rounded to the nearest integer equaled
the number of bins that were randomly chosen to
receive precipitation. Precipitation rates were based on
the total fractional area occupied by the wet bins and
the area average precipitation, and all other meteoro-
logical forcings were an average of the wet
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Figure 3. (a) A time series of column integrated soil water mass for the explicit (solid black line), bulk (solid gray
line), and sampling (10 bins; dashed black line) methods. Peaks correspond to precipitation events and meandering
peaks and troughs represent the diurnal cycle. (b) A time series of absolute errors for the grid area LH flux for the
bulk (dashed gray line) and sampling (10 bins; solid black line) methods.
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(a) A time series of column integrated soil water mass for the explicit (solid black line), bulk (solid gray

line), and sampling (10 bins; dashed black line) methods. Peaks correspond to precipitation events and meandering
peaks and troughs represent the diurnal cycle. (b) A time series of absolute errors for the grid area LH flux for the
bulk (dashed gray line) and sampling (10 bins; solid black line) methods.

meteorological sets used for the wet areas in the explicit
method. The remaining bins received meteorological
forcings that were an average of the dry meteorological
sets used for the dry areas in the explicit method. Grid
values were calculated using equation (18).

J
Grid_Value= Z |:(Sl.B)jaj:|

J=1

(18)

4. Results

4.1.

[16] In this study, PawTot was the diagnostic variable
used for applying the different methods (see section
3.2), and was chosen because it is a good representation
of the saturation of the entire soil column. Therefore,
here, we present time series of the grid-averaged column
integrated soil water mass to show that applying these
methods to PawTot is appropriate. Furthermore, time
series of the grid-averaged PawTot are similar to the
column integrated soil water mass. Plot a of Figures 3—
5 is time series of grid-averaged column integrated soil
water mass for the arid, semiarid, and wet site, respec-
tively. The sampling method performed the best at all

Column Integrated Soil Water and Stress

sites, and with an increasing bin count (10, 20, and 50),
time series converged to the explicit method. It was con-
cluded that with the use of 10 bins, the spatial heteroge-
neity similar to the one simulated with the explicit
method was sufficiently represented. For all sites, the
bulk method showed a drier time series relative to the
explicit method as a result of area-averaged meteorol-
ogy. Even though water was evenly distributed over the
grid area soil column in this method (the other methods
were comprised of multiple columns), very light rainfall
rates and very high canopy interception rates domi-
nated and resulted in a drier time series. For the calcula-
tion of grid areca water stress factor (time series not
shown here because the plots are too erratic) the single
PawTot value in the bulk method calculation at every
time step caused erratic behavior in the calculation of
the water stress factor as changing PawTot values
moved up and down the highly nonlinear curve in Fig-
ure 1. For the other methods, increased sampling along
the nonlinear curve with multiple instances of SiB3
eliminated that behavior, and it was concluded that the
dry bins contributed more to the grid average water
stress factor than the wet bins. From further analysis,
the change to the initial Gaussian soil moisture distribu-
tion as documented in Sellers et al. [2007], was also
documented here. During dry periods, the initial
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Figure S.

(a) A time series of column integrated soil water mass for the explicit (solid black line), bulk (solid gray

line), and sampling (10 bins; dashed black line) methods. Peaks correspond to precipitation events and meandering
peaks and troughs represent the diurnal cycle. (b) A time series of absolute errors for the grid area LH flux for the
bulk (dashed gray line) and sampling (10 bins; solid black line) methods.

PawTot distribution for the explicit method dried down
uniformly (distribution moved from right to left, see
Figure 2) and during precipitation events, the distribu-
tion developed wet peaks (wet fractions of the grid
area) to the right of the remainder of the distribution
that stayed dry, and as the wet peaks dried down, they
moved to the left and eventually converged with the rest
of the distribution. Relative to the bulk method, the
sampling method better captured this progression.

4.2. Latent Heat (LH) and Sensible Heat (SH) Fluxes

[17] The bulk method grid-averaged LH flux was
always the highest relative to all methods, with the
greatest contributions coming from the canopy inter-

Table 1. Time Integrated Hydrologic Flux Percentage Errors®

cepted LH flux as more precipitation was intercepted
with this method, and the ground LH flux, where water
that did reach the surface contributed more to the total
LH flux as water was evenly distributed over the entire
grid rather than in a fraction of the grid as in the other
methods. The grid-averaged LH flux for the sampling
method was very close to the explicit method for all bin
counts, and this was not surprising because during pre-
cipitation events the total area that received precipita-
tion was much closer to the explicit method. Absolute
errors (defined as the absolute value of the difference
between an explicit method grid value and the equiva-
lent grid value from the other methods [Sellers et al.,
2007]) for the bulk and sampling methods for the grid-

Arid Site Bulk  Arid Site Sampling Semiarid Site Bulk Semiarid Site Sam-

Wet Site Bulk  Wet Site Sampling

Method (%) Method (%) Method (%) pling Method (%)  Method (%) Method (%)
Total LH flux 15 - 12 -3 28 -2
Canopy intercepted LH flux 179 10 215 -2 273 5
Ground LH flux 6 - 45 -3 4 —4
Transpiration 2 - -8 -3 =7 -
Runoff - - -99 23 -98 24

“Time integrated hydrologic flux percentage errors for all methods compared to the explicit method. Errors below 1% are indicated by a dash,

and negative and positive values represent an underestimation and overestimation, respectively.
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averaged LH flux for all sites are presented in plot b of
Figures 3-5. Table 1 shows time integrated percentage
errors for all hydrologic fluxes, where all methods are
compared to the explicit method. Errors below 1% are
indicated by a dash, and negative and positive values
represent an underestimation and overestimation, respec-
tively. For the SH flux, the bulk method always had the
lowest values relative to all methods, while the grid-
averaged SH flux for the sampling method was very close
to the explicit method for all bin counts.

4.3. Runoff, Canopy Air Space (CAS) Temperature,
and Relative Humidity (RH)

[18] In the bulk method, time integrated total runoff
was lower than the explicit method with the exception
of the arid site, where runoff was about the same for the
bulk, explicit, and sampling method due to very light
rainfall rates in the experiment, which resulted in very
little total runoff. Relative to the other methods, the
bulk method had the lowest CAS temperature as well as
the highest CAS relative humidity as a result of having
the largest LH flux. During precipitation events, in the
bulk method all components that contributed to the
grid area total LH flux came from the entire grid area
rather than a fraction of the grid as in the other meth-
ods, where the total LH flux was a grid average of the
wet and dry fractions. Additionally, in the sampling
method the CAS temperature and CAS relative humid-
ity were not too different when compared to the explicit
method, as a result of similar meteorological and soil
moisture distributions.

5. Concluding Remarks and Future Work

5.1.

[19] To improve the representation of soil moisture
heterogeneity and spatially varying precipitation, the
methods of Sellers et al. [2007] were applied to the land
surface model, SiB3. By applying the methods to Paw-
Tot, a SiB3 variable representative of the soil column
saturation and used to diagnose the water stress factor
for the vegetation canopy, the representation of the spa-
tially varying soil column saturation as well as surface
fluxes for the bulk and sampling methods were com-
pared to the explicit method for a 2 month period. Pre-
cipitation was randomly distributed over the grid area
for the explicit and sampling method, while the expo-
nential distribution currently used in SiB3 was used for
the bulk method.

[20] When compared to the explicit method, the bulk
method was dominated by canopy interception due to
lighter rainfall rates and had a much higher LH flux.
The greatest contributions to the LH flux came from
the canopy interception as well as the ground. Even
though the time series for the column integrated soil
water and PawTot were drier than in the explicit
method, the water that did reach the soil surface during
precipitation events allowed for a higher ground LH
flux since the flux came from the entire grid area rather
than a fraction of the grid as in the explicit method.
Additionally, as a result of the high LH flux, the CAS

Concluding Remarks

temperature was lower and the CAS relative humidity
was higher than in the explicit method.

[21] For the duration of the study in the sampling
method, the total fractional area occupied by the wet
bins was very close to the area occupied in the explicit
method. This resulted in similar rainfall rates, total run-
off, canopy interception, and surface fluxes, and suggests
that the sampling method better captures the spatial het-
erogeneity in the distribution of PawTot and the total
column saturation produced by the explicit method.
Choosing the sampling method over the bulk method,
the grid area transitions from being dominated by can-
opy interception, and having a cool and humid CAS to a
grid area dominated by a warmer and less humid CAS.
Of course, using a large bin count will produce results
that are in closer agreement with the explicit method,
but it was concluded that using a bin count of 10 is an
improvement from the bulk method and better captures
subgrid-scale heterogeneity at little additional computa-
tional cost. To illustrate this, the wall clock time for each
method was averaged across all sites and was normalized
to the bulk method giving values of 1, 6, and 51. This
means that on average, the explicit method was about 50
times more expensive computationally while the sam-
pling method (using 10 bins) was only about 5. It is
important to note that simulations were performed using
an iMac system with a single processor and values may
vary across different computing systems.

5.2. Future Work

[2] We plan on applying the methods from this
research to other sites to evaluate the performance there,
and use a number of different distributions of PawTot
for initialization. Other experiments have been suggested
and involve saturating certain soil layers and perhaps
mixing biomes within the grid area. Finally, we plan on
performing online runs using a single column model
(SCM) as well as running these methods within a GCM.
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