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Abstract

Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported
emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are
accurate and representative of a country’s contribution to GHG concentrations in the atmosphere.
Furthermore, verifying biogenic fluxes provides a check on estimated emissions associated with
managing lands for carbon sequestration and other activities, which often have large uncertainties. We
report here on the challenges and results associated with a case study using atmospheric measurements
of CO, concentrations and inverse modeling to verify nationally-reported biogenic CO, emissions. The
biogenic CO, emissions inventory was compiled for the Mid-Continent region of United States based
on methods and data used by the US government for reporting to the UNFCCC, along with additional
sources and sinks to produce a full carbon balance. The biogenic emissions inventory produced an
estimated flux of —408 £ 136 Tg CO, for the entire study region, which was not statistically different
from the biogenic flux of —478 + 146 Tg CO, that was estimated using the atmospheric CO,
concentration data. At sub-regional scales, the spatial density of atmospheric observations did not
appear sufficient to verify emissions in general. However, a difference between the inventory and
inversion results was found in one isolated area of West-central Wisconsin. This part of the region is
dominated by forestlands, suggesting that further investigation may be warranted into the forest C stock
or harvested wood product data from this portion of the study area. The results suggest that observations
of atmospheric CO, concentration data and inverse modeling could be used to verify biogenic
emissions, and provide more confidence in biogenic GHG emissions reporting to the UNFCCC.

Introduction Greenhouse gas (GHG) emission reductions continue
to be at the center of negotiations about future
agreements (Tollefson 2013). A key opportunity to

establish a new agreement is occurring at a meeting of

As evidence for anthropogenic impacts on climate
change continue to grow (IPCC 2013), the need to

reduce emissions looms as a key issue of global debate.  the United Nations Framework Convention on
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Climate Change (UNFCCC) during late 2015 in Paris,
France. Along with the scope and magnitude of
emission reductions, methods to verify reductions has
emerged as a key challenge for negotiators
(NRC2010).

Signatory countries to the UNFCCC are required
to conduct an inventory and report GHG emissions to
the UNFCCC. Reporting is based on GHG inventory
guidelines developed by the Intergovernmental Panel
on Climate Change (IPCC 2006). The guidelines
include estimation of anthropogenic-driven emissions
of CO, and other GHGs from energy use, industrial
processes, waste management, agriculture, as well as
biogenic carbon (C) sinks and sources from managed
land, such as C stock changes in soils and biomass.

Estimating biogenic emissions is complicated
because of UNFCCC reporting requirements. First,
emissions are not reported for all activities, such as lat-
eral transport of C in products that lead to CO, emis-
sions elsewhere (Ciais et al 2007, West et al 2011).
Consequently, inventories do not provide a full C bal-
ance for a region. Second, GHG emissions are only
reported for managed land, which is a proxy to isolate
emissions directly influenced by anthropogenic activ-
ity (IPCC 2010). However, emissions on managed
land will also be driven by natural processes and indir-
ect effects of anthropogenic activity, such as CO, ferti-
lization or atmospheric N deposition. Third,
emissions accounting may allow for exclusions, such
as factoring-out of emissions due to natural dis-
turbances (e.g., wildfires) that are not directly under
the control of managers (Canadell et al 2007, Kurz
etal2013).

Biogenic emissions will likely be a part of an agree-
ment to reduce GHG emissions, particularly if offsets
are allowed through management of biogenic sources
and sinks (Smith et al 2007a, 2007b). In addition, bio-
genic emissions may increase if bioenergy is used to
reduce fossil fuel combustion in order to meet reduc-
tion targets (e.g., see US Energy Independence and
Security Act of 2007). Bioenergy feedstock production
contributes to GHG emissions, such as C stock chan-
ges in soils and biomass due to land use change (Far-
gione et al 2008). Verifying biogenic emissions will be
challenging given the complexities in reporting, and
due to the large uncertainties in estimation of biogenic
emissions arising from the complex interactions
among driving variables, including weather patterns,
topographic variation, soil characteristics, dis-
turbances and a variety of land use and management
activities.

Verification of biogenic emissions could incorpo-
rate several levels of evaluation. First, inventory meth-
ods can be evaluated for consistency with UNFCCC
reporting guidelines. Appropriate application of
methods provides assurance that the emission esti-
mates are credible. This type of evaluation is currently
conducted by the UNFCCC on a periodic basis for
developed countries through an expert review process.
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Second, an independent verification program could
confirm adoption of land use and management prac-
tices that are reported to enhance biogenic sinks or
reduce biogenic sources. Verifying practices provides
confidence that managers have taken the necessary
steps to reduce GHG emissions. Third, verification
could incorporate further evaluation using direct mea-
surements of C sources and sinks that are independent
of the inventory compilation (IPCC 2006). For exam-
ple, soil monitoring networks are in various stages of
implementation in several countries that could serve
as an independent check (van Wesemael et al 2011).
Another option would be to measure fluxes using
eddy-covariance flux towers that are deployed
throughout a region. When combined with modeling,
an independent estimate of the regional flux can be
produced and compared to an inventory (Xiao
etal 2010, Raczkaetal 2013, Hilton et al 2014).

Fourth, methods have been under development
for more than a decade that utilize observations of
CO, concentrations in the atmosphere to estimate the
biogenic CO, flux with inverse modeling (Tar-
antola 2004). CO, fluxes are estimated based on
knowledge of wind speeds and directions in conjunc-
tion with CO, concentration changes in the atmo-
sphere. This technique has been widely used,
including applications at the global scale (Tans
et al 1990, Bousquet et al 2000, Gurney et al 2002),
continental scales (Peters et al 2007, Gourdji
et al 2012), and more recently at regional scales
(Gockede et al 2010, Lauvaux et al 2012a, Schuh
et al 2013). Using these data to evaluate a biogenic
emissions inventory is likely to offer a strong inference
for verification by demonstrating that reported bio-
genic emissions are consistent with changes in atmo-
spheric CO, concentrations.

Both the IPCC (2006) and US National Research
Council (NRC 2010) have raised the possibility of
using atmospheric measurements of GHGs to verify
emission inventories. We report here on an approach
evaluating how this type of verification could be
accomplished for biogenic sources and sinks using
national GHG emissions data. Our case study focuses
on emissions reporting for 2007 in the Mid-Continent
region of the United States, which is dominated by
agricultural production (figure 1). Several challenges
must be addressed in order to verify biogenic emis-
sions data compiled by governments for UNFCCC
reporting using this approach. First, a complete C
budget is needed in order to make relevant compar-
isons with fluxes derived from atmospheric CO, con-
centration data (Hayes and Turner 2012). A full
biogenic carbon budget is not compiled by govern-
ments for reporting to the UNFCCC, requiring esti-
mation of additional sources and sinks. Second,
inventory data from individual emission categories,
such as cropland and forestland, must be combined on
a common grid from a variety of data sources with dif-
ferent spatial and temporal resolutions. Third, an
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the Central United States.

Figure 1. The Mid-Continent case study region shown in the 0.5° grid was located in an area dominated by agricultural operations in
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approach was needed to statistically verify if CO,
fluxes from the emissions inventory are consistent
with fluxes estimated with atmospheric CO, con-
centration data based on the associated probability
distributions for each set of fluxes.

Methods

Biogenic CO, emissions enventory

The biogenic CO, emissions inventory for this case
study included emission categories associated with
forest biomass, incorporation of C in wood products,
and agricultural cropland and grassland soil C as
reported in the United States GHG Inventory (US-
EPA 2010, 2013) (table 1). Additional emission
categories were needed to obtain the full C balance for
comparison to CO, fluxes derived from atmospheric
concentration data (Hayes and Turner 2012). There-
fore, the inventory also included CO, emissions from
decomposition of waste in landfills and agricultural
residue burning (McCarty 2011), CO, uptake by
agricultural crops and C in harvested grains, and CO,
returned to the atmosphere from livestock and human
respiration (West et al 2011). The emission categories
can have a net positive or negative annual emission

rate; net negative emissions result from CO, that is
removed from the atmosphere and sequestered in
biomass, soils or commodity products (e.g., harvested
wood used in housing construction).

Agriculture dominates the study region requiring
tracking C through crop and livestock production sys-
tem. Cropland biomass was estimated based on
county-scale crop yield data compiled in the USDA
National Agricultural Statistics (USDA-NASS 2010),
and crop-specific parameters for harvest indices, root:
shoot ratios, moisture and C contents to convert the
harvested grain data into units of C (West
et al 2010, 2011). Grassland biomass stock changes
were not estimated given the limited amount of data,
and is likely a minor contributor to net C stock change
in this region.

The residues remaining after harvest were burned
or incorporated into soil C pools. CO, emissions from
agricultural residue burning were estimated based on
the area burned using 500 m MODIS 8-day Surface
Reflectance Product (MOD09A1) and 1 km MODIS
Active Fire Products (MOD14/MYD14) (McCarty
et al 2009), fuel load (i.e., amount of crop residue bio-
mass), combustion efficiency and CO, emission fac-
tors for residue burning (McCarty 2011). Soil C stock
changes for agricultural cropland and grassland were
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estimated by simulating the balance between C input
from residues and C loss from decomposition using
the land use and cropping histories from the USDA
National Resources Inventory (USDA-NRCS 2009)
using the DAYCENT ecosystem model (Ogle
etal 2010, US-EPA 2013).

Harvested C from croplands is returned to the
atmosphere within the region through livestock and
human respiration. The remaining harvested C is
transported and emitted in other regions of the United
States or exported to foreign countries (West
etal2011). The exported C effectively represents a sink
for CO, in the study region, but is ultimately returned
to atmosphere through heterotrophic respiration in
other regions. CO, emissions from human respiration
were estimated from population data provided in the
United States Population Census and total food intake
by gender and age class (West et al 2009). CO, emis-
sions from livestock respiration were derived from
livestock population data compiled in the USDA
National Agricultural Statistics (USDA-NASS 2010).
The amount of C emitted as CO, was based on the dif-
ference between C intake from harvested grain and
grazing pastures relative to C released as waste, milk,
and methane, or incorporated into livestock growth
(West et al 2011). C in manure was included as an
input to the soil in the DAYCENT model simulations
for soil C stock changes.

In addition to agricultural systems, carbon flows
were monitored into forestland biomass, litter and soil
C pools using the USDA Forest Service, Forest Inven-
tory and Analysis data (FIA) (USFES 2009), and stan-
dard inventory-to-C conversion methods (Smith
et al 2007a, 2007b, US-EPA 2010, Heath et al 2011,
Smith et al 2013). Live biomass, standing and down
coarse woody debris, and soil C are periodically sur-
veyed by the FIA program. A portion of field plots are
visited annually, but data were compiled across all
plots for this analysis to increase precision. Average
stock changes were estimated over five to seven year
time blocks, which varied based on the frequency of
individual plot resampling. A portion of the biomass C
is harvested, removed from sites, and incorporated
into wood products rather than returned to the atmo-
sphere as CO, (Skog 2008, Heath et al 2011). Decay
rates are applied to harvested wood products to esti-
mate how much carbon remains in this pool
over time.

Emissions from decomposition of waste in land-
fills were estimated at a county scale from information
on waste disposal compiled in the US-EPA Landfill
Methane Outreach Program from 2399 landfills (US-
EPA 2012). CH,4 emissions were estimated according
to IPCC methods (Pippatti and Svardal 2006), and
were used to approximate the amount of CO, emis-
sions based on guidelines developed by the US-EPA
(US-EPA 2001), which assume equal amounts of CO,
and CH, emissions for landfills.

SMOgleetal

Estimates and uncertainties for the biogenic emis-
sion categories were derived based on probability dis-
tribution functions for model parameters, structure
and inputs as described elsewhere (see references in
table 1). Some emission categories were estimated at
sub-county spatial resolution or sub-annual time
scales, but were aggregated to county and annual time
scales for this analysis. The one exception was forest C,
which was estimated on five to seven year time inter-
vals, and were down-scaled based on annual averages.
The result was a sample of 100 Monte Carlo draws of
net annual emissions for all categories at a county
scale. The county-scale data were interpolated to a 0.5°
grid based on area weighting of the county data asso-
ciated with each grid cell (figure 1). Total CO, emis-
sions were estimated for each replicate draw by
summing the emissions for all categories in a respec-
tive draw. The final estimate for each grid cell was the
average of the 100 replicates. Uncertainty was quanti-
fied based on the standard deviation of total emissions
at each location using the sample covariance matrix,
capturing spatial correlation in the estimates across
the entire grid. A standard shrinkage estimate was used
to derive the uncertainty because the number of cells
(i.e., 336) is greater than the number of Monte Carlo
replicates (i.e., 100) (e.g., Schifer and Strimmer 2005).
To estimate fluxes at larger scales, we aggregated each
replicate draw on the 0.5° grid to 1°, 2° and 4° grid
resolutions, and the entire region.

Atmospheric measurements and inversion

The atmospheric CO, concentration measurement
network consisted of a combination of flux towers
with infrared gas analyzers (Stephens et al 2011),
NOAA-ESRL tall radio towers with gas analyzers
(Bakwin et al 1998), and cavity ring-down spectro-
meters deployed on cellular communications towers
(Richardson et al 2012). Aircraft measurements from
the NOAA-ESRL continental profiling network (Cre-
voisier et al 2010) and the Carbon Tracker global
inversion system (Peters et al 2007) were used to
provide CO, boundary conditions.

Inverse modeling was used to estimate the net flux
of CO, between atmosphere and land surface based on
variation in atmospheric CO, concentrations over
space and time with knowledge of atmospheric trans-
port (Lauvaux et al 2012a, 2012b, Schuh et al 2013).
The regional inversion utilized the Weather Research
and Forecast model for atmospheric transport (Ska-
marock et al 2005), Lagrangian particle dispersion
model to associate surface fluxes and boundary condi-
tions with  atmospheric
(Uliasz 1994), and a Bayesian style least squares solu-
tion technique to solve for the surface fluxes (Lauvaux
et al 2012a). Prior flux estimates were obtained from
the SiB-CROP model (Lokupitiya et al 2009). In order
to focus on biogenic emissions, the atmospheric signal
associated with fossil fuel emissions was subtracted

measurement  data
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from the simulated CO, concentrations within the
inverse modeling framework, using fine resolution
fossil fuel emissions data (Gurney et al 2009).

Uncertainties were approximated for the a priori
biogenic fluxes, the transport model, and the bound-
ary conditions by performing sensitivity experiments
across a range of plausible error estimates (Lauvaux
et al 2012b). While the inversion utilized in the regio-
nal inverse modeling system provided a formal esti-
mate of the uncertainty for the posterior fluxes, the
uncertainty estimate was limited by assumptions
inherent to the inverse model. To improve the estima-
tion of uncertainty, Lauvaux et al (2012a) experi-
mented with a number of the assumptions required by
the regional inverse model including prior fluxes, CO,
inflow at the domain boundaries, atmospheric CO,
uncertainties (which encompasses transport, model-
data mismatch, and observational uncertainties), and
spatial coherence of corrections to prior fluxes. These
experiments provided a range of posterior flux dis-
tributions and differences in the mean estimates,
which were used in an ad hoc way to inflate the var-
iance of a single inverse model simulation accounting
for biases. Additional analysis of the degree of freedom
in the signals showed that the inverse solution is pri-
marily constrained by the atmospheric data rather
than a priori information (Lauvaux et al 2012b). In the
analysis presented here, the prior fluxes from Sib-
CROP were not included because the annual C flux for
the MCI region was imposed rather than simulated
(Schuh etal2013).

The inversion results and uncertainties, initially
produced at a weekly time step with a 20 km resolu-
tion, were interpolated to a 0.5° grid covering the Mid-
Continent study region (figure 1). This 0.5° grid did
not correspond exactly to the domain on which the
inversion was modeled and so the outer grid cells were
removed that were only partially covered by the inver-
sion (i.e., we did not extrapolate the results to cover
the entire grid). This resulted in a slightly smaller study
region and estimated CO, flux compared to previous
publications (Lauvaux et al 2012a, Schuh et al 2013).
Similar to the inventory, the data on the 0.5° grid were
aggregated to the larger grid resolutions of 1°, 2° and
4°, as well as the entire region.

Verification analysis

Statistical hypothesis tests were used to formally verify
the agreement between the emissions inventory and
the CO, fluxes estimated from the atmospheric
measurement network and the inverse model system.
The tests are similar to two-sample t-tests for equality
of means. However, a difference arises because rather
than having repeated samples, this comparison is
based on point estimates and covariance matrices. The
information used in the hypothesis tests are the annual
emissions totals on the 0.5° grid and the covariance
matrices associated with the inverse modeling and

SMOgleetal

inventory methods that describe both uncertainty at
the location and spatial correlation between estimates
on the grid. Temporal correlation was not relevant for
this test because there was only one time step in the
analysis.

To formalize, let t*) denote the vector of fluxes
estimated from the atmospheric CO, concentration
data and inverse model system for each location in the
study region. Likewise, let t{F) be the vector of fluxes
from the emissions inventory. Let ¥4 and =) repre-
sent the covariance matrices associated with the inver-
sion and inventory respectively. All of the tests were
performed to evaluate ifa” ) is significantly different
from a”t{"), where a is a vector which corresponds to
the test performed. Underlying each test is the
assumption that ## is normally distributed with
mean y and covariance matrix =), and likewise for
tl-(E). Here, p denotes the vector of true fluxes at each
location in the study region. Our test statistic for each
testisa’ (th) - ti(E)) under the assumptions that the
statistic has a normal distribution with mean zero and

variance a” (EEA) + 3z ) a, and that t/) is uncorre-

lated with /¥, Our tests account for the uncertainty
associated with each estimate given the information
comprising 24 and =,

Verification of the emissions inventory using
atmospheric CO, concentration data were evaluated
at 0.5°% 1°, 2° and 4° grid resolutions, as well as the
entire region. Differences were considered significant
at an alpha level of 0.05. This analysis does not address
multiple testing issues. However, the main purpose is
to explore differences, and then further evaluate the
inventory, to the extent that differences are found, and
determine if an error exists. Consequently there are
minimal consequences for identifying a statistically
significant difference when there are no differences in
reality (i.e., type L error).

Results

The Mid-Continent region was a net sink for biogenic
CO, fluxes in 2007 according to the emissions
inventory (table 2, figure 2). The flux was dominated
by C uptake driven by crop production and export of
grain from the region. Other emission categories
contributing to the biogenic sink include forest
growth, and incorporation of C into wood products,
and C sequestration in agricultural soils (table 2,
figure 2). Livestock respiration produced the largest
net positive biogenic emissions to the atmosphere.
Other biogenic emission categories such as CO,
emissions from human respiration, crop residue
burning or decomposition of waste in landfills were
smaller contributors to the regional flux.
Measurements of CO, concentrations also indi-
cated a strong biogenic CO, sink over the study region
during the 2007 summer growing season, June
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Table 2. CO, emissions (Tg CO, eq.) associated with individual sources of biogenic emissions in the Mid-Continent study region. Forest-
land C stock change includes biomass, coarse woody debris, soil and harvested wood products.

Biogenic emission categories Estimate (Tg CO, eq) 95% Confidence interval
Cropland harvested yield C —367.97 —497,-239

Forestland C stock changes —85.08 —-107.7,-62.4
Agricultural soil C stock changes —33.56 -58.3,-8.7

Agricultural residue burning 0.79 0.78,0.80

Landfill decomposition 2.16 1.29,3.03

Human respiration 18.85 18.84,18.86

Livestock respiration 56.73 30.48,82.98

Total emissions inventory —408.1 —544,-272

Total atmospheric inversion —478.0 —624,—332

through August, consistent with the period of highest
crop growth (Miles et al 2012, Lauvaux et al 2012a).
Midday atmospheric boundary layer CO, concentra-
tions had a very strong seasonal cycle over the middle
of region from Southwest Minnesota to Northern Illi-
nois (>35 ppm), which is dominated by corn and soy-
bean production (figure 2). There was also a reduced
but substantial seasonal cycle in Northern and South-
ern portions of the region (>25ppm) (Corbin
etal 2010, Miles etal 2012).

According to the biogenic emissions inventory,
there was a net flux of —408 Tg CO, from the atmo-
sphere into the study region during 2007, with a 95%
confidence interval of +136 Tg CO,. The estimated
biogenic flux was —478 £ 146 Tg CO, based on the
atmospheric CO, concentration data and inversion.
Consequently, the CO, flux according to the biogenic
emissions inventory was not statistically different
from the inversion. A non-significant result means
that the emissions inventory is consistent and verifi-
able with the changes in atmospheric CO, concentra-
tions, given their associated uncertainties.

Comparisons were also made between the inven-
tory and inversion results across incrementally larger
resolutions within the Mid-Continent study region,
including 0.5°, 1 °, 2°, and 4° resolution grid scales (see
figure 2 for 0.5° gridded data). No significant differ-
ences were found at any of the scales, except at the 0.5°
scale in one isolated area of West-central Wisconsin,
near the border with Minnesota. The isolated area was
largely dominated by forestland, suggesting further
investigation may be needed into small scale forest
inventory data in this region and harvested wood pro-
duct estimates.

The relative uncertainty associated with the inven-
tory and inversion results changed with the spatial
scale from the entire region to the finest resolution of a
0.5° (figure 3). However, the change in uncertainty
across the scales was much greater for the inversion
results. The inversion analysis was well constrained at
the scale of the entire region with a coefficient of varia-
tion of 0.16, which was similar to the coefficient of var-
iation of 0.17 for the CO, flux from the emissions
inventory. The relative uncertainty increased dramati-
cally in the atmospheric inversion with an average

coefficient of variation of 0.91 at the 0.5° resolution,
compared to a value of 0.43 for the flux estimates from
the inventory.

Discussion

The results of the Mid-Continent case study show
promise for using atmospheric CO, concentration
data and inverse modeling systems to verify biogenic
GHG emission inventories. North American conti-
nental scale comparisons have also been made in
previous studies and demonstrated that emissions
inventories are consistent with inversions of atmo-
spheric CO, measurements, even though the estimates
could vary by more than 1000Tg CO, (Pacala
et al 2001, Gourdji et al 2012, Hayes et al 2012, King
et al 2012). The large differences may be caused by
biases in the transport models (Baker et al 2006), or
unrealistic constraints imposed on the inverse model-
ing system resulting from limited atmospheric CO,
measurement data. The Mid-Continent study
attempted to overcome limitations in CO, observa-
tions with a network of measurements that was denser
than typically available for deriving an atmospheric-
based Cbudget (figure 1).

Errors in the emissions inventory may have also
contributed to the large differences in past compar-
isons with inverse modeling results due to limited,
inconsistent or no data collection for certain land sur-
face processes that influence CO, fluxes, such as
woody encroachment in the Southwestern United
States (Hayes et al 2012), or urban trees in regions with
a large proportion of metropolitan areas (Nowak
et al 2013). However, the Mid-Continent case study
utilized extensive land-based surveys, remote sensing
products, census data and commodity statistics that
are collected to support trade in this important eco-
nomic region for agriculture. One notable gap in the
inventory, however, was the lateral transport of C
from terrestrial systems into rivers and lakes (Butman
and Raymond 2011). While it is less likely that limited
or missing data is an issue in this region, there are still
uncertainties associated with gaps that will require fur-
ther study.
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Figure 2. Net annual CO, emissions (Gg CO,) in 2007 at a 0.5° spatial resolution from dominant emission categories in the Mid-
Continent study region, including (A) cropland harvested crop biomass, (B) forest C stock changes and harvested wood products, (C)
agricultural soil C stock changes, (D) livestock respiration emissions, (E) total biogenic emissions inventory, and (F) atmospheric CO,
inversion. Negative emissions represent a net annual CO, uptake from the atmosphere to the land surface, and positive emissions
represent a net annual release of CO, to the atmosphere from the land surface. CO, emissions from landfills, human respiration and

The uncertainty in the inventory and inversion
results both increased from the largest scale of the
entire region to the finer resolutions of 4°, 2 °, 1°,
and 0.5° gridded CO, fluxes (figure 3). However,
the uncertainty increased more with the inversion
estimates than the inventory. The higher precision
in the inventory estimates at smaller scales is likely
due to finer resolution data that were used to esti-
mate the emissions, such as county-scale agri-
cultural statistics and forest plot data. In contrast,
the inversion relied on the atmospheric

concentration data dispersed in a ring near the
boundary of the region (figure 1). To obtain more
precise estimates, the atmospheric inversion would
likely require more towers dispersed within the
region, providing more spatially-detailed data on
atmospheric CO, concentrations. Regardless, the
relatively high precision in the inversion results for
the entire region suggests that the design of the net-
work as a ring surrounding the region can provide a
reasonable constraint on the total regional flux
(Lauvaux et al 2012a).
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If biogenic emissions inventories are to be verified
by an operational atmospheric CO, measurement and
inverse modeling system, additional information will
be needed beyond current requirements for national
GHG inventory reporting to the UNFCCC. First, non-
anthropogenic sources of biogenic emissions must be
estimated to be comparable to CO, fluxes estimated
from atmospheric concentration data because both
anthropogenic and non-anthropogenic activities are
integrated in the atmosphere. UNFCCC reporting of
biogenic emissions currently only requires estimation
of activity on managed land, while biogenic emissions
from other areas are considered non-anthropogenic
and hence, not included in an inventory (IPCC 2006,
IPCC2010).

Second, some components of the C budget that are
influenced by anthropogenic activity are largely
ignored in a national GHG inventory. In these cases,
the impact on atmospheric CO, concentrations is
considered transient with limited effect outside of an
annual cycle. One example is the production and use
of agricultural commodities that remove and return
about the same amount of C to the atmosphere on
annual time scales (Ciais et al 2007, West et al 2011).
However, documenting the location of biogenic C
uptake and release in commodities will be necessary in
a national GHG inventory to make valid comparisons
with fluxes estimated from atmospheric CO, con-
centration data.

The Mid-Continent region is a nearly optimal
location for this case study due to the strong influence
of biogenic emission categories on the CO, flux (e.g.,
agricultural crop production); relatively simple terrain
and abundant meteorological data for the inverse
modeling; and extensive land surveys and commodity
data to support the inventory compilation (figure 1).
Further testing in other regions is warranted. More-
over, new satellite-based CO, data are emerging that

can be incorporated into inverse modeling (Crisp
et al 2004, Houweling et al 2004, Kadygrov et al 2009),
and studies are suggesting that inversion results can be
further optimized by combining in situ atmospheric
CO, concentration data from a ground-based network
and aircraft campaigns, with the emerging satellite-
based CO, data (Nassar et al 2011, Keppel-Aleks
etal2011,Basuetal 2013, Lauvaux and Davis 2014).

The goals of a verification system for biogenic
emissions will need to be clarified before mobilizing an
operational CO, measurement and inverse modeling
system to support emissions reporting. The levels of
accuracy and precision, and the spatial and temporal
resolution required will dictate the investment to cre-
ate a functional system. In addition, an operational
system could be used to verify total biogenic emissions
from a region, as we have presented here, or it could be
used in combination with the inventory data to pro-
duce emission estimates. For example, Cooley et al
(2013) found that the uncertainty in the total CO, flux
for the Mid-Continent region is reduced by 21% if the
results from the emissions inventory and inverse mod-
eling system are combined into a single CO, emissions
estimate.

Conclusions

Our study demonstrates how atmospheric CO, con-
centration data combined with inverse modeling
technology could provide a robust check on biogenic
emissions statistical methods
applied in the Mid-Continent case study. This level of
evaluation would complement other forms of verifica-
tion, such as evaluation of inventory methods for
consistency with UNFCCC reporting guidelines, con-
firmation that management practices have been
adopted to enhance biogenic sinks, or evaluation of C
stock changes and fluxes at specific locations in a

inventories using
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region. Over time, incorporating verification based on
the atmospheric CO, concentration data is likely to
produce more accurate and credible estimates for
reporting biogenic emissions to the UNFCCC, as
errors are discovered and corrected. In turn, more
credible estimates will lead to less uncertainty for
developing and monitoring the outcomes of climate
change policies associated with biogenic sources and
sinks.
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