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Abstract The interaction of land with the atmosphere is sensitive to soil moisture (W). Evapotranspiration
(ET) reacts to soil moisture in a nonlinear way, f(W), as soils dry from saturation to wilt point. This nonlinear
behavior and the fact that soil moisture varies on scales as small as 1–10 m in nature, while numerical gen-
eral circulation models (GCMs) have grid cell sizes on the order of 1 to 100s of kilometers, makes the calcula-
tion of grid cell-average ET problematic. It is impractical to simulate the land in GCMs on the small scales
seen in nature, so techniques have been developed to represent subgrid scale heterogeneity, including: (1)
statistical-dynamical representations of grid subelements of varying wetness, (2) relaxation of f(W), (3) mod-
erating f(W) with approximations of catchment hydrology, (4) ‘‘tiling’’ the landscape into vegetation types,
and (5) hyperresolution. Here we present an alternative method for representing subgrid variability in W,
one proven in a conceptual framework where landscape-scale W is represented as a series of ‘‘Bins’’ of
increasing wetness from dry to saturated. The grid cell-level f(W) is defined by the integral of the fractional
area of the wetness bins and the value of f(W) associated with each. This approach accounts for the spatio-
temporal dynamics of W. We implemented this approach in the SiB3 land surface parameterization and
then evaluated its performance against a control, which assumes a horizontally uniform field of W. We dem-
onstrate that the Bins method, with a physical basis, attenuates unrealistic jumps in model state and ET
seen in the control runs.

1. Introduction

1.1. Land-Atmosphere Coupling, Soil Moisture Importance
The atmosphere and land surface are bidirectionally coupled [e.g., Charney, 1975; Shukla and Mintz, 1982;
Entekhabi et al., 1996; Sellers et al., 1997; Koster et al., 2004; Seneviratne et al., 2010; Gentine et al., 2012].
Incoming radiation, precipitation, wind, temperature, and humidity influence the surface, while surface con-
ditions interact with these same variables to determine the fluxes of energy, moisture, momentum, and
trace gases between the atmosphere and the terrestrial biosphere. Global-scale general circulation models
(GCMs) of the atmosphere have had persistent challenges in realistically calculating these fluxes [Sellers
et al., 1996c; Pitman, 2003; Yang, 2004].

Surface fluxes are closely coupled to land surface conditions (slope, vegetation, and soil moisture) that vary
widely on length scales of 1 m to many kilometers. In contrast, most GCMs have spatial resolutions of 25–
200 km, but require accurate grid-averaged surface-atmosphere fluxes, as calculated by their land surface
parameterizations (LSPs), to predict the future state of the atmosphere, including cloudiness and rainfall,
which in turn feedback directly onto the land surface condition [Sato et al.,1989; Koster et al., 2006; Santa-
nello and Peters-Lidard, 2011]. Bridging this scale gap explicitly by increasing the resolution of GCMs to the
scale of surface heterogeneity is not practical.

The scale gap has to be confronted directly with improved parameterizations, whatever the resolution of
the GCM. This means that credible (i.e., verifiable) new LSPs must be developed and tested offline and in
GCMs. Entekhabi and Eagleson [1989], Sellers et al. [1992a], Georgi and Avissar [1997], and Nakaegawa et al.
[2000] have all shown how the scale gap could be a problem for different land surface processes in GCMs.
The numerical tests of Sellers et al. [1992a] assumed that the lower atmospheric forcing (downwelling radia-
tion, temperature, humidity, wind speed) is relatively homogeneous over a grid area at a given time, but
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interacts with a surface of spatially varying slope, vegetation density, and soil wetness. However, soil mois-
ture, with its much greater spatial variability [Schmugge and Jackson, 1996; Ryu and Famiglietti, 2006] and its
associated nonlinear relationships to evapotranspiration, does not lend itself to simple integration. Soil
moisture and the processes that depend on it are significant hold-outs against bridging the scale gap.

In this paper, we explore a new methodology, the Bins approach of Sellers et al. [2007] (hereafter, SE07), for
representing soil moisture heterogeneity in a commonly used LSP, SiB3 [Baker et al., 2003, 2008]. We will
demonstrate that this technique can effectively bridge the scale gap for soil moisture in GCMs and has the
potential to improve the calculation of surface-atmosphere fluxes of heat, water vapor, and trace gases,
especially in highly seasonal or semiarid regions where robust and realistic simulations have proven to be
difficult [Schwalm et al., 2010].

1.2. Soil Moisture Regulation of Transpiration
Evapotranspiration (ET) is nonlinearly related to soil moisture. Early work such as Pierce [1958], Lowry [1959],
and Budyko [1974] describe empirical curves relating the decrease in ET as soils dry out. Canopy density,
seasonality, and phenology influence the partition between soil surface evaporation and transpiration. As
wet soils dry, water becomes more tightly bound to soil particles, until a threshold is reached (wilt point)
where moisture becomes virtually inaccessible to roots. Plant-scale observations reveal this process to be
very nonlinear. Plants will function normally as soil moisture is reduced, then close their stomates rapidly as
the wilt point is approached, as shown in Figure 1 [Muchow and Sinclair, 1991; Colello et al., 1998; Serraj
et al., 1999; Laio et al., 2001b]. Individual plants use hormones to communicate between their root systems,
where water stress is sensed, to their stomates, which explains this sharp ‘‘On-Off’’ response to decreasing
soil moisture [Kim et al., 2010]. We represent this behavior (as in SE07) as:

E5Epf ðWÞ (1)

where E is the transpiration rate, Ep is the potential unstressed transpiration rate, W is soil moisture
expressed as fraction of saturation, and f(W) describes the effect of soil moisture stress, ranging from 1
when the soil is wet to 0 at wilt point when high surface tension within the soil prevents transpiration.

SE07 demonstrated that using equation (1) to describe the evapotranspiration (soil evaporation and transpi-
ration were considered as a single process) response of the entire grid square was unrealistic. This is easy to
understand: within a given grid square, individual plants will transition from on to off per equation (1) as

the local soil moisture content decreases,
but a potential range of soil moisture con-
ditions within a grid area may result in
a modulated, i.e., less steep, integrated
response for the landwscape as a whole.
Across a landscape of size similar to a GCM
grid cell ($100 km) soil moisture varies as a
result of topographic position, as locations
higher on hillslopes will be drier, while low-
er, riparian regions will be wetter or saturat-
ed. Precipitation can reduce heterogeneity
through stratiform rainfall that moistens the
entire domain, or soil wetness heterogenei-
ty independent of topographic position can
be increased by migrating convective cells.
Finally, preferential ET from wetter regions
in the absence of rainfall will result in large-
scale drying and reduction of heterogeneity
[Sellers et al., 1992a, 1995; Pan et al., 2008; Li
and Rodell, 2013], although this behavior is
not observed universally [e.g., Famiglietti
et al., 1999; Teuling et al., 2007; Liu et al.,
2012].

Figure 1. Relationship between soil saturation fraction W and stress function
f(W). This describes the ability of roots to extract water from the soil. A value
of 1 implies no stress, and a value of 0 results in shutdown of ET. Two sites are
shown: Pe de Gigante, S~ao Paulo State, Brazil (BR-PEG; 85% sand, 3% clay) and
ARM Southern Great Plains tallgrass site in Oklahoma, USA (US-ARM; 37%
sand, 23% clay). (a) The ‘‘continuous’’ value of f(W) and (b) the curve of f(W)
when discretized into 10 bins.
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Subgrid heterogeneity can be approximated by a variety of methods. Some of these methods include:

1. Statistical-dynamical treatments: Several models use different statistical methods to generate descrip-
tions of spatial variability in soil moisture. Entekhabi and Eagleson [1989] use a two-parameter gamma
function to describe spatial variability of soil moisture, then derive equations for infiltration-excess (Hor-
ton) and saturation-excess (Dunne) surface runoff (subsurface runoff is not considered). Equations are
derived for evaporative loss of water from surface soil and for removal of water from the soil column via
transpiration, with subgrid variability again determined by the character of the gamma function. Bare-
soil evaporation is determined by the balance between gravitational drainage and diffusivity (upward)
along a moisture gradient. The authors describe the ET from wet soils as being controlled by the atmo-
spheric potential, ET in dry conditions controlled by the soil (water limited), and they define a soil mois-
ture value (s%) that describes the boundary between these two regimes. There is no soil restriction
(analogous to f ðWÞ5 1) where soil moisture exceeds s%, and a linear reduction in f(W) between s% and
wilt point, where f(W) 5 0. Evaporation from the soil surface is controlled directly by gravitational, diffu-
sive, and capillary forces, as opposed to the empirical resistance formulation favored by some others [i.e.,
Sellers et al., 1986, 1996a; Colello et al., 1998].

Wood et al. [1988] introduce the idea of a Representative Elemental Area (REA) as a size dimension
that is large enough so that a statistical representation is adequate to capture spatial variability, and
explicit modeling of heterogeneity is not required. Using this idea, Famiglietti and Wood [1994a] con-
struct a model where hydrologic regimes are defined and use topographic data following TOPMODEL
(TOPography-based hydrological MODEL) [Beven and Kirkby, 1979; Sivapalan, 1987] where water table
depth decreases (and ET approaches potential values) along a gradient from upland to riparian regions.
In these ‘‘interacting buckets’’ there is no between-element water transfer in the unsaturated zone, but
saturated subsurface flow can move between elements. In an application to a tallgrass prairie [Famiglietti
and Wood, 1994b] they find that this statistical representation gives results almost identical to a high-
resolution explicit treatment.

Motivated by improving runoff simulation, Koster et al. [2000] also use TOPMODEL topographic index
to characterize the statistical-dynamical characteristics of individual catchments within a grid cell, then
partition this catchment into three distinct regimes (saturated, transpiration, and wilting). Catchment-
scale topographic index data determines a shape pdf relating area to mean water table depth (!d ), and
adjustment in !d determines the relative area of the three regimes within each catchment.

These treatments are similar in that topographical information plays a leading role in determining sta-
tistics and treatment of heterogeneity within a grid cell. Spatial variability of precipitation is not consid-
ered. In most cases, the shape of the density function relating wetness and relative area are assumed,
based on either topography or on representative catchment-scale moisture values.

2. Relaxation: Equation (1) is ‘‘relaxed’’ when inserted into the GCM LSP, by flattening out the f(W) curve,
using the assumption that landscape-scale processes will incorporate a range of W values in the domain
[e.g., Laio et al., 2001a; Porporato et al., 2001, 2002; Rodriguez-Iturbe, 2000; Baker et al., 2008, 2013]. This
leads to more graceful dry-downs, but it does not have a sound biophysical basis.

3. Catchment hydrology: Wood et al. [1992] proposed a modified catchment model with a treatment of var-
iable infiltration capacity (VIC) over the grid area to moderate the effects of equation (1). The model did
not directly address vegetation effects but describes the effects of a varying saturated area which con-
tributes to direct runoff. Model tests showed improved performance over conventional bucket models
[e.g., Budyko, 1974], but the approach has limitations for the calculation of surface-atmosphere fluxes in
that there are no explicit physiological controls on ET.

4. Tiling: Another approach is to aggregate subgrid areas with common characteristics, usually vegetation
type [Avissar and Pielke, 1989; Koster and Suarez, 1992; Bonan et al., 2002; Ke et al., 2013]. In this case, soil
moisture heterogeneity is implicitly coupled to vegetation. Surface-atmosphere fluxes are calculated sep-
arately for the tiles within a grid-area and multiplied by fractional area to provide the area-weighted flux.
This approach is used in some biophysical LSPs [e.g., Koster and Suarez, 1992; Bonan et al., 2002; Krinner
et al., 2005; Arain et al., 2006; Best et al., 2011]. SE07 divided a grid cell of uniform vegetation content into
tiles and demonstrated that tiling has its own numerical and accuracy problems, including large excur-
sions from ‘‘reality’’ (as defined by a very high resolution calculation using 106 cells) unless a very large
number of tiles are used. Medina et al. [2014] demonstrated that 10 tiles were able to capture the vari-
ability represented by 100 grid cells over an arbitrary area, in an application of SE07.
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5. Hyperresolution: This approach relies on explicit simulation at very high spatial resolution ($10–100 m)
to deal with all possible combinations of topography, vegetation, and soil moisture [Wood et al., 2011].
This may be computationally possible in the GCM environment at some point in the future, but the argu-
ments for it have been disputed [Beven and Clocke, 2012]. The problems of parameter specification and
computational expense would be immense, and the benefits doubtful. Parameterizations would still
have to be used and the computational resources might be better spent on ensemble runs at coarser
resolution.

With no single solution, the problem remains. Here we expand the concepts of SE07 into a ‘‘full’’ model, to
calculate realistic and accurate grid-averaged fluxes at reasonable cost, while accounting for the time-space
variations of the independent surface variables.

1.3. Soil Wetness Bins
A conceptual method was introduced in SE07 to represent subgrid variability of soil moisture and its influ-
ence on ET, using an extremely simple model based on equation (1). In this treatment, domain-scale soil
moisture is represented as a distribution, whereby soil wetness (from dry to saturated) is discretized into a
finite number of ‘‘Bins,’’ each associated with a fraction of the grid area. The midpoint wetness value of each
bin defines the representative wetness function controlling ET for that bin, as defined by equation (1). In
SE07 the ‘‘Bins’’ method, as well as a calculation using domain-averaged wetness (a ‘‘control’’ simulation
analogous to the method currently used in many GCMs today) was evaluated against an explicit representa-
tion of 106 individual calculations (which corresponded to ‘‘reality’’) where soil moisture was allowed to
evolve in response to variable conditions as might be experienced across a GCM grid cell. It was demon-
strated that, especially at times when the domain-averaged wetness falls in the nonlinear region of f(W), the
‘‘control’’ ET can experience large fluctuations as well as exhibit large errors when compared to the explicit
method. The ‘‘Bins’’ method was shown to reduce errors considerably when compared with the explicit sim-
ulation and to track the ‘‘reality’’ case closely, even when using a small number of bins (such as 10). After
each time step, the fractional areas associated with each bin are updated in accordance with their contribu-
tions to the ET rate, and thus the evolving dynamics of the spatial variability of soil moisture are captured
over time. However, in the SE07 study, equation (1) only crudely represented all the complexities of soil
moisture control on evapotranspiration; the soil model was a single layer, the time step was 1 day, and the
meteorological forcing that controlled potential ET was invariant across time and space.

In this study, we apply the methods described in SE07 within the Simple Biosphere Model (SiB) [Sellers et al.,
1986, 1996a; Baker et al., 2003, 2008] and test the resulting model in standalone mode at two semiarid field
sites. We evaluate simulations of energy, moisture, and carbon flux between the land surface and atmo-
sphere, and do so using a more realistic representation of the processes involved than was possible in SE07.

2. Methods

2.1. Simple Biosphere Model
The Simple Biosphere Model (SiB) was first introduced as an LSP for GCMs by Sellers et al. [1986]. It has since
undergone several revisions: SiB2 [Sellers et al., 1996a] and SiB3 [Baker et al., 2003, 2008]. SiB2 and subsequent
versions incorporate the ‘‘enzyme-kinetics’’ class of photosynthesis-conductance models following Farquhar et al.
[1980], Ball et al. [1987], and Collatz et al. [1991, 1992] with integration up to the canopy scale and phenology
specified by satellite data as described in Sellers et al. [1992b,b]. The SiB3 and SiB4 soil modules are now similar
to the Common Land Model (CoLM) [Dai et al., 2003] or the Community Land Model (CLM) [Lawrence et al.,
2011], in that moisture and temperature are collocated in the layers of the numerical scheme, an improvement
from the initial SiB and SiB2 formulations which held soil moisture and temperature in mismatched layers.

SiB has been coupled to global GCMs [Sato et al., 1989, Randall et al., 1996; Sellers et al., 1996c] as well as to
mesoscale models [Denning et al., 2002; Nicholls et al., 2004; Wang et al., 2007; Corbin et al., 2008, 2010]. Evalua-
tion against eddy-covariance fluxes at individual sites have been performed in forests [Baker et al., 2003, 2008,
2013; Schaefer et al., 2008] and grasslands [Colello et al., 1998; Hanan et al., 2005]. SiB has a demonstrated com-
petence when compared with other land-atmosphere model across multiple sites [Schwalm et al., 2010].

Previously, SiB has applied the ‘‘stress function,’’ f ðhWiÞ (where h i represents the area-average value), to
evaporation and photosynthesis by multiplying the unstressed canopy conductance term to yield the actual
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canopy conductance, gc [Sellers et al., 1996a]. The formulation for f(W) used in this paper follows SE07, which
is similar but not identical to the equation used in SiB2 [Sellers et al., 1996a] which was itself related to
Colello et al. [1998]. The equation used in SE07 is

f ðWÞ5Maxð0:0; 0:25ðW20:1Þ; tan hð0:0045wsW28Þ11Þ (2)

where ws is the moisture potential in the soil at saturation and W is the fractional saturation of the soil. The
dependence upon ws shifts the region of large variability in f(W) with respect to relative saturation as sand
and clay content in the soil changes. Figure 1 shows examples of f(W) for the two sites used in this study, Pe
de Gigante in S~ao Paulo state in Brazil (BR-PEG), and the US-ARM Southern Great Plains winter wheat site in
Oklahoma, USA (US-ARM).

2.2. Bins Configuration and Numerical Scheme
That there is heterogeneity in soil moisture is axiomatic. The Bins paradigm is agnostic to whether that hetero-
geneity is due to topography, precipitation, or vegetation. In this regard, the Bins method is not a discretiza-
tion of equations that describe actual physical processes such as overland or subsurface flow of water, but is

rather an abstraction. The bins are a physi-
cally consistent mathematical description
that encompasses multiple ecophysiologi-
cal processes.

We can use an example to illustrate this.
In Figure 2, we demonstrate a drying
sequence, moving from top to bottom.
Moving from bottom to top could be a
moistening sequence. The left hand col-
umn shows a single wetness value, as cal-
culated using multiple layers in the
vertical domain with a single value in
each layer representing the entire grid
cell. We call this Z-space. Initially (top
plot), the vertically integrated column is
moist. As runoff and ET remove water
from the column, the wetness value
decreases. This behavior may be thought
of as homogeneous, where all area in the
grid cell is described with a single wet-
ness value that moves incrementally in
response to wetting or drying events that
may be large or infinitesimally small. As
the column continues to desiccate, the
single wetness value in Z-space continues
to decrease. One possible representation
of this sequence, in the Bins paradigm, or
B-space, is shown in the right-hand col-
umn. In this case, wetness is not repre-
sented as a single value along a
continuous spectrum from zero (dry) to
one (wet), but as a combination of bins or
buckets with constant wetness values,
and varying relative area. During the dry-
ing sequence (moving top to bottom),
area moves from wet bins to drier bins. It
is important to keep in mind that actual
water is not being relocated within the
grid cell during this process, but area is.

Figure 2. Conceptual diagram showing evolution of grid cell-mean vertically
integrated soil moisture (left column) and soil moisture as determined using
wetness bins (right column). See text for further explanation.

Journal of Advances in Modeling Earth Systems 10.1002/2016MS000764

BAKER ET AL. SOIL MOISTURE SCALE GAP 5



The relative wetness bin distribution shown here is only an example. During the drying process that can
only be described in Z-space by the continuous movement of column wetness to the left (or to the right
during moistening), the distribution of bin area is consistent with this wetness value. However, there is no
restriction on the number of possible combinations of wetness bin areas that can describe a single column-
mean wetness value. The bin distribution is an emergent property of the physical mechanisms (ET, runoff)
that combine with meteorological forcing to drive the model.

In the simple model of SE07, soil wetness and evapotranspiration were calculated using a daily time step
and single-layer soil. To incorporate this technique into the full SiB3 model requires reconciliation between
the idea of vertically varying wetness, as represented by a layered soil model, and horizontally varying wet-
ness, as represented by the Bins scheme.

In general, we use the Bins domain (B-space) to calculate horizontal water transfers (surface runoff), subsur-
face drainage out of the bottom of the soil, area-averaged controls on evapotranspiration, hf ðWÞi and the
soil surface resistance to evaporation, hRsoili. It is important to note the distinction between a term obtained
using multiple wetness bins, hf ðWÞi, and one determined using a single area-averaged value, f ðhWi). The B-
space calculations also track and update the changes in the horizontal spatial variability of soil moisture due
to precipitation, ET and runoff (surface and subsurface) by adjusting the fractional areas of the wetness bins.

The vertical domain, Z-space, is used to calculate the area-averaged vertical flows of water in the soil (infil-
tration, percolation); radiation; heat fluxes (latent, sensible, and ground) and exchanges of trace gases such
as CO2. Note that Z-space is used to calculate the surface-atmosphere fluxes as grid-area averages.

In short, we use each scheme to do what it does best: horizontal runoff due to both infiltration-excess and
precipitation onto saturated areas and the effects of spatial variability are captured in B-space, while the
area-averaged vertical transfers of mass and energy between the land and the atmosphere, and also vertical
exchanges in the soil, are described in Z-space. Historically, the Z-space transfers are calculated only once
per grid area per time step. The incorporation of B-space into SiB3 adds a negligible computational burden.

The distribution of area between moisture bins and the vertical distribution of water in soil layers are calcu-
lated independently; neither distribution is decomposed from the other. Self-consistency between B-space
and Z-space is maintained through simultaneous calculations of processes affecting both B-space and
Z-space at critical points in the calculation timeline (see next section).

We use the designation W (fraction of saturation) and bin increment i 5 1 to nbins (where nbins 5 10, the
number of soil wetness bins in the interval from 0 to 1) when referring to B-space. In Z-space, we describe
volumetric water content (m3H2O m23soil) as h, and soil porosity, or maximum volumetric water content as
hsat. Z-space soil depth is labeled as j 5 1 to nsoil (where nsoil is the number of vertical soil layers, also 10)
when referring to Z-space. Relative root fraction (rootf) in each Z-space soil layer follows Jackson et al.
[1996], and soil physics generally follows CoLM [Dai et al., 2003] and CLM [Lawrence et al., 2011].

At all times, the total integral of water in the grid cell is balanced between Z-space and B-space, and mass is
conserved:

Xnbins

i51

Wiai5hWtoti5
Xnsoil

j51

hj

hsat
3

Dzj

ztot
(3)

where ai is the fractional area of each bin, hj and hsat are the layer-specific water content and porosity,
respectively, Dzj is the layer thickness, and ztot is the total soil column depth. The term hWtoti represents the
grid cell-mean total-column soil wetness fraction. The discretization of equation (2), f(W), into 10 wetness
bins for the BR-PEG and US-ARM sites, is shown in Figure 1, plot b. f(W) is constrained to have a value of
zero at wilt point, and 1.0 (or no stress imposed) at field capacity. The exact location of wilt point and field
capacity along the saturation gradient depends on soil character.

2.3. Order of Operations
In SiB3, soil moisture is predicted in a single operation, whereby infiltration, percolation, and water removal
from the soil by roots and runoff are applied simultaneously to determine soil moisture content in individu-
al soil layers. In the application of the Bins methodology, we have split these processes into separate steps,
as shown in Figure 3. There are three steps at which B-space and Z-space must be considered
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simultaneously to maintain water balance: The
first is in the calculation of subsurface drainage
(Step 1), where the lowest soil layer in Z-space
must contain sufficient moisture to satisfy drain-
age requirements calculated in B-space. The
second is in the calculation of infiltration
(Step 3), where available pore space in the sur-
face Z-layer must be large enough to accept
water infiltrating from precipitation and/or
interception storage. The third is in the calcula-
tion of soil surface evaporation (Step 8) where
Z-space surface soil wetness, relative to the
mean wetness in the Z-column, exerts influence
on the amount of evaporation as calculated
using relative area in the bins.

Step 1 is the calculation of subsurface runoff.
We have applied a fractional area versus drain-
age relationship, where subsurface drainage is
determined by wetness fraction. Moisture con-
ductivity out of the bottom of each wetness bin
is calculated as in Campbell [1974] or Clapp and
Hornberger [1978] as

ki5ksatW2b13
i (4)

where ksat is saturated hydraulic conductivity
(in m s21), b is an exponent that is dependent
upon soil character, and i signifies wetness bin.
To maintain consistency between Z-space and
B-space we scale Wi in equation (4) by the ratio
of the saturation fraction of the lowest layer in
Z-space to the wetness of the Z-column as a
whole. If the deepest Z-layers are relatively dry,
then subsurface drainage will be reduced,
regardless of wetness bin. We then calculate
subsurface moisture drainage from each bin
(with the exception of the driest bin, which is
assumed to have no subsurface outflow) as

wouti5
kiDt

hsat ztot
3ai (5)

where subsurface runoff from each bin is
assumed to leave the grid cell. The term Dt is
time step, hsat ztot represents the total pore
space (in m) available to be filled with water
over the vertical soil column, wouti has units of
column-total fractional wetness, and ai is frac-

tional area of bin i for the grid cell. This approach is analogous to traditional treatments of drainage from
the deepest soil layer in Z-space. The subsurface component of the water budget in B-space is calculated as

dWsubsfc
total 5

Xnbins

i51

2wouti (6)

which represents total subsurface drainage across the grid cell in units of fractional saturation of the total
column. Once the subsurface drainage of water from bins has been calculated, the integrated subsurface

Figure 3. Order-of-operations schematic showing how code control-
ling individual processes and mechanisms is partitioned between the
Z-space and B-spaces in SiB3-Bins.
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flow leaving B-space (dWsubsfc
total ) is also removed from the deepest soil layer (hnsoil) in Z-space as total column

subsurface runoff.

In Step 2 (Figure 3), rainfall (assumed to be spatially uniform in this study) is partitioned into a fraction that
intercepts the canopy and a fraction that passes directly through the canopy, in Z-space. Rainfall inter-
cepted by vegetation accumulates on leaves to a certain depth (dependent upon LAI), before running off
leaves and onto the ground. Next, in Step 3 (B-space), water accumulates on the ground to a maximum
depth of 1 mm. Puddle depth above this value is removed from the grid cell as overland runoff. Water is
removed from this surface storage pool via infiltration and overland flow generated by any excess:

In fili5MINfð12WiÞaihsat z1qH2O; precipitationg (7)

where Wi is the fractional saturation of each bin, ai is the fractional area of bin i, z1 is the top soil layer thick-
ness (in Z-space, the layer that the water will be infiltrating into), and qH2O is the density of water. The term
hsat z1qH2O represents the maximum amount of water that can be held in Z-layer 1, and we use hsat instead
of h1 because Z-layer 1 is quite thin and water percolates quickly through it. Therefore, In fili is the minimum
of precipitation or the available pore space in layer 1 that can receive water, for each bin. Drier bins have
more pore space available. Rainfall falling on the wettest bin is immediately converted into overland flow,
and very heavy rainfall falling on subsaturated bins can also exceed the available pore space and generate
infiltration-excess (Horton) runoff. The infiltration step requires coordination between B-space and Z-space
as shown by the combination of z1 and Wi in Equation (7). In fili has units of meters of water per square
meter of land, and is converted to a wetness fraction as follows:

dWin fil
i 5

In fili

hsztot
(8)

We now have two terms that describe the movement of water related to wetness bins; one associated with
removal via subsurface runoff, and one representing infiltration of rainfall (if present). Each wetness bin will
have a change in water content, given by

dW total
i 5dWin fil

i 2dW subs fc
i (9)

With total change in water for each bin due to subsurface drainage and infiltration (dWtotal
i ) calculated, we

now update relative bin area for the first time. Following SE07, a temporary bin-area array bk, k51; nbins is
created with zero area in each bin. Bin values Wk are identical to the original bin values Wi. For each
i51; nbins, we determine the index of the bin values on either side of the new interim moisture value
(Wi1dWtotal

i ) as

Wk & Wi1dWtotal
i & Wk11 (10)

and a new area distribution is incremented for each bk during the loop as

bk5bk1ð12HÞai (11)

and

bk115bk111Hai (12)

where

H5
ðWi1dWtotal

i Þ2Wk

Wk112Wk
(13)

Equations (11–13) must be looped over for all k51; nbins for each bin i (meaning 2 complete loops through
the number of bins is required), and when completed the new area distribution bk is copied back into the
original area distribution ai.

In Step 5, the area-averaged values of hf ðWÞi and hRsoili are calculated by integrating these values at each
bin midpoint multiplied by bin area as follows:

hf ðWÞi5
Xnbins

i51

f ðWiÞai (14)
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where f ðWiÞ represents the value of equation (2) for the wetness value in each bin. The term hf ðWÞi repre-
sents grid cell-integrated soil moisture influence on stomatal conductance, and therefore both transpiration
and trace gas (e.g., CO2) flux through stomates are regulated by this term.

In SiB, soil evaporation from the uppermost soil layer is regulated by a soil surface resistance term, Rsoil

[Sellers et al., 1995] (equation (3)). In SiB3-Bins, we use the inverse of Rsoil to obtain a conductance term, gsoil

gsoil5
1

Rsoil
5

!
exp
"

d11d2

#
h1

hsat z1qH2O

$%&21

(15)

where h1
hsat z1qH2 O

is the surface layer soil wetness and d1 and d2 are empirical constants. In the Bins paradigm,
we can replace the surface layer soil wetness term h1

hsat z1qH2 O
with bin wetness values Wi. When calculating gsoil

using wetness bins, we scale Wi by the ratio of surface wetness in Z-space to mean Z-column wetness to
maintain consistency between Z-space and B-space. This scaling term inhibits soil surface evaporation
when surface soils are dry, and increases it when the surface is moist such as immediately following precipi-
tation events. In the calculations, we use an evaporation ‘‘conductance,’’ gsoil, to avoid numerical issues asso-
ciated with large resistance to evaporation in dry soils.

In Step 6, we obtain a grid cell-mean value for hgsoili from the wetness bin distribution as

hgsoili5
Xnbins

i51

ðgsoilÞi3ai (16)

where ðgsoilÞi represents the surface soil evaporation resistance for each wetness bin as determined by
equation (15). Scaling the hgsoili by relative wetness in the surface layer of Z-space also prevents artificial
enhancement of evaporation conductance in soils with high clay content, where wilt point may occur at
high relative wetness compared to sandy soils.

In Step 7 (Z-space), infiltration and percolation are now computed for the vertical soil layers following the
Richards equation approximation to Darcy’s law prior to the surface flux calculation. The integrated resistance
terms, hf ðWÞi and hRsoili are ready to be applied to the full model calculations of energy and moisture fluxes,
stomatal conductance, and photosynthesis. Surface exchanges of energy, moisture, momentum, and trace
gases are then computed in Z-space (Step 8), as in the past, with a single set of calculations for the grid area.

Water is removed from the soil from direct evaporation (kEsfc : soil layer 1 only) and transpiration (kET : every
soil layer containing roots) in Step 9. These ET components are regulated by the values of hf ðWÞi and hgsoili
computed previously. This is done by setting

h15h12kEsfc2kET rootf1 (17)

for the top soil layer, and

hj5hj2kET rootfj (18)

for soil layers j 5 2 to nsoil where rootfj is relative root fraction.

Finally, in Step 10, the area-averaged losses and gains of moisture and CO2 from Step 8 are deconvolved
using equations (10)–(13) to allow updating of the fractional areas associated with each bin. We maintain
consistency with the grid-average moisture fluxes (soil surface evaporation and transpiration) in each bin i
by requiring that

dWi5kEsfc
ðRsoilÞi
hRsoili

1kET
f ðWiÞ
hf ðWÞi

(19)

It follows that total water removal from the soil by transpiration and surface soil evaporation, as represented
in the bins, is

dWtot5
Xnbins

i51

dWi5kEsfc1kET (20)

This numerical scheme maintains consistency between the wetness bins (B-space) that represent an
abstraction of moisture distribution across the landscape, and the explicit representation of the vertical
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distribution of water in individual soil layers (Z-space). The vertical soil water distribution represents an inte-
gration of the probability density function of bin areas, and does not maintain fidelity to any individual wet-
ness bin. A wetter soil will manifest as an overall increase in wetness across vertical soil layers as well as a
movement of area into bins of higher wetness. As soils dry out the grid cell-mean wetness as represented
in the vertical soil layers will decrease, and area will be transferred from wet to drier bins. Just as there is no
single distribution of bin area that corresponds to a single grid cell-mean or column-mean wetness value,
there is no single vertical distribution of water that corresponds to a single mean wetness. A soil with rela-
tively wet surface layers in Z-space (corresponding to a wetting front, perhaps), or a soil with dry surface
and wetness at depth (as a result of prolonged ET with little or no precipitation) can have identical column-
mean wetness values. The variability in Z-space and B-space, while maintaining consistency and water bal-
ance, is another emergent property of the Bins paradigm.

3. Results

With the conceptual model of SE07 installed into SiB3, we now turn to comparing simulations made using
the Bins method of determining soil moisture stress on ET with control runs. In the control runs, we use a
grid cell-mean soil wetness value to obtain f ðhWiÞ, and the Bins value is calculated using the bin-level val-
ues of f(W) normalized to the density function of bin area to obtain hf ðWÞi. Both simulations use the formu-
lation of f(W) given in equation (2). In selecting test sites, we chose sites that are expected to occupy the
steepest nonlinear part of f(W) for at least a part of the year, preferentially over extremely wet or dry loca-
tions that may not traverse the extremely steep portion of the f(W) curve during the annual cycle.

We simulate regions where soil moisture is a significant control on ecosystem behavior, so initial conditions
are critical. Rather than initialize a model ‘‘cold start’’ (for both control and Bins runs), we ‘‘spin-up’’ all simu-
lations by running multiple cycles of the available meteorology. For both the Bins and control runs, the ini-
tial bin area distribution is irrelevant if enough years are simulated (>20). For all runs, we initialize with
uniform soil temperature set at the annual mean air temperature, and all Z-layers set to 95% of saturation,
which corresponds to all area in the wettest bin. Control and Bins simulations are run identical number of
years for spin-up.

For evaluation, we compare model fluxes to observed fluxes from eddy covariance towers. This is not an
optimal comparison, as the Bins paradigm is designed to address behavior on scales larger than a flux tower
footprint. However, flux tower data offer the possibility for straightforward evaluation of model behavior
across multiple ecosystems. Since the focus of this paper is to determine how the Bins method translates
from an idealized application into a fully resolved land model, we believe flux data are a reasonable method
for evaluation. Bins behavior across larger scales will be the focus of subsequent research.

3.1. Pe de Gigante, BR-PEG
Pe de Gigante is a woodland savanna (cerrado sensu strictu) site in S~ao Paulo state, Brazil [da Rocha et al.,
2002]. Annual precipitation is $1300 mm yr21, with a wet season during Austral summer and a dry season
(precipitation <100 mm month21) [Goulden et al., 2004] of 7 months or more. At 21:6

'
South latitude, the

BR-PEG site has some seasonality in annual temperature ($5
'
C amplitude in monthly mean temperature)

and radiation, but the site does not experience a traditional ‘‘winter’’ with dormant vegetation (Figure 4,
plot a). The site is water-limited in that soil moisture is a strong regulator of surface flux (i.e., ‘‘vegetation
control’’ over ET) [da Rocha et al., 2009; Costa et al., 2010], as the evaporative fraction (kE=ðH1kEÞ) is large in
the wet season (which is a sink of CO2) and small in the dry season (source of CO2). We simulate the years
2001–2003 [DeGonçalves et al., 2013] inclusive, and evaluate simulated fluxes of heat, moisture, and CO2

against observations from the LBA-MIP effort [DeGonçalves et al., 2013; Baker et al., 2013]. Observations of
latent and sensible energy fluxes are available for 2001–2002 [DeGonçalves et al., 2013], and carbon fluxes
at this site are obtained from Restrepo-Coupe et al. [2013] and are available for 2002–2003. Baker et al.
[2013] demonstrated an ability to reproduce observed fluxes using SiB3, but in that case the treatment of
f(W) was modified with an ad hoc landscape-scale relaxation following Baker et al. [2008]. In the current sim-
ulations, we apply the strict treatment of f ðhWiÞ in the control runs as described above.

Meteorological drivers (pressure, temperature, precipitation) are obtained from instruments on the tower
[DeGonçalves et al., 2013], and vegetation phenology (LAI, fraction of Photosynthetically Active Radiation,
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fPAR) are obtained from the MODIS collection 5 Global Land Cover Subsetting tool [ORNL DAAC, 2008a,
2008b]. The model is spun up for 21 years, or seven cycles over the 3 years of available forcing data.

Monthly averaged fluxes of CO2, water, and energy (Figure 5) can clearly be seen to improve in the Bins sim-
ulation when compared to the control. Carbon flux shows extreme variability in the control run at times
switching from source to sink or back from month to month. The control run demonstrates a rapid transi-
tion from CO2 sink to source following the end of the wet season, in disagreement with observations and
the Bins simulation. Dry season control run LE is small compared to observations, suggesting an over-
sensitivity to water stress in the soil. Sensible heat flux (H) is overestimated in both simulations, but the
excess is larger in the control run. The Bins simulations show much more fidelity to observations than the
control. Statistical evaluation at BR-PEG was performed, but are not significant due to the small number of
data points (24 monthly values, but each month is not necessarily independent), and therefore are not
presented.

The bins-weighted and area-mean calculations of f(W) are shown in plot d of Figure 5, along with the values
of mean soil wetness (W) for the Bins and control runs. W is not identical between the two runs because ET
and infiltration vary based on model formulation. In the control run, f ðhWiÞ shows large variability in
response to small changes in total soil wetness, while hf ðWÞi in the Bins runs evolves in a smoother
manner.

The distribution of relative area in the 10 wetness bins, shown as a snapshot taken at the end of each
month in 2003, is shown in Figure 6. LAI is relatively invariant during the year at values between 2 and 3
(not shown) and temperatures are above freezing in all months, meaning that transpiration will be attempt-
ing to draw moisture out of the soil during the entire year. Overall ET is partitioned more toward transpira-
tion ($80%) in both SiB3-control and SiB3-Bins simulations due to the combination of persistent shading by
the canopy and the high sand content, which allows rapid percolation of water downward resulting in dry
surface soils. As soils dry during seasonal drought stomates close and evaporative fraction decreases to val-
ues of 0.5 or less. BR-PEG was relatively wet at the close of calendar year 2002, so at the end of January (Fig-
ure 6, plot a) area is accumulated in wetter bins on the right of the distribution, with a peak in bin 7.
February and March 2003, while wet, did not have as much precipitation. Area is still accumulated in wetter
bins, but the peak in these months is in bin 6. As the system dries further from April to June (plot b), the
peak wetness moves further left to bin 5, and in June area begins rapidly accumulating in drier bins, with a
hint of bimodality in bin 2. July and August are distinctly bimodal with peaks in bins 2 and 4, and by

Figure 4. Mean annual cycle of precipitation, radiation, and temperature for the (a) BR-PEG and (b) US-ARM tower sites.
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Figure 5. Monthly averaged values of (a) net carbon exchange (NEE), (b) latent heat (LE), (c) sensible heat (H), and (d) soil stress function/
mean wetness of soil column for SiB3 control (red) and SiB3-Bins (blue) simulations at BR-PEG for years 2001–2003.

Figure 6. Distribution of area for soil wetness bins 1–10 for year 2003 at BR-PEG as simulated by SiB3-Bins. Bin distribution is plotted for
the last day of each month. Line colors are coded to precipitation amount; the three wettest months (January, February, November) are
shown in dark blue, the driest months (June, July, August) are deep red, and intermediate months are lighter shades of each.
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September the secondary peak in bin 4 is gone. During October and November, the peak area remains in
bin 2 even though November was the second wettest month of the year, and the amount of area in bin 2
decreases as area is added to wetter bins. December is anomalously dry, so the distribution moves left
toward drier bins again during the month. Since f(W) 5 0 in bin 2 results in stomatal closure, area can only
be accrued into bin 1 by evaporation from the soil surface. This can be seen to happen in July to September
(plot c). Theoretically, extremely strong ET could force area into bin 1 past the stomatal closure of bin 2 (Fig-
ure 1), but in these simulations ET is constrained when area is in bin 2 to the extent that accumulation of
area in bin 1 is minimal. When the grid cell is wet, area is maximized in bins where f(W) 5 1 (bin> 3), and
stomates are open. This behavior is consistent with the idea of ‘‘environmental control’’ over ET as described
by Costa et al. [2010] and da Rocha et al. [2009]. Spatial variability, as represented in the bin area distribu-
tion, is much smaller during the driest months (when significant area is in bin 2 only) than in the wet sea-
son, when area is spread over many wetness bins. We find that spatial variability in soil wetness (as
represented by bin area distribution) is greater during wet periods and decreases with overall desiccation,
consistent with the findings of SE07.

3.2. Southern Great Plains, US-ARM
We simulate 7 years (2000–2006) at the winter wheat crop site site at the Atmospheric Radiation Measure-
ment Southern Great Plains Central Facility (US-ARM) [Fischer et al., 2007; Raz-Yaseef et al., 2015]. We simu-
late this site at a grassland in SiB3. This site is more seasonal than BR-PEG, residing at 36:6

'
North latitude

(Figure 4, plot b). Mean annual precipitation is $900 mm yr21, with maximum during Boreal summer. LAI
and fPAR are seasonal, and the site is dormant during the winter. Driver meteorology and observed flux
data are taken from data sets provided by the North American Carbon Project (NACP) Site-Synthesis experi-
ment [Schwalm et al., 2010]. Precipitation data in the NACP files exceeded climatological expectation, so we
scaled precipitation amounts to align them with Global Precipitation Climatology Project (GPCP) [Adler
et al., 2003] following the method of Baker et al. [2010]. Phenology (LAI, fPAR) were again taken from MODIS
land cover subsets [ORNL DAAC, 2008a, 2008b]. As with BR-PEG, we initialized SiB-Bins with a saturated, iso-
thermal soil, and spun up the model over multiple cycles of the 7 year data record.

The improvement in model performance is not as dramatic at US-ARM as at BR-PEG (Figure 7). Both models
match the timing, but fail to simulate the strong uptake of CO2 observed in April. This may be related to the
respiration parameterization used in both models that follows Denning et al. [1996], which results in a bal-
anced carbon budget, as opposed to the net sink shown in the observational data. Seasonal cycles of latent
heat are better in the Bins simulations in 2004 and 2005, but the control is superior in 2003 and both mod-
els underestimate late-summer LE in 2006. Sensible heat from the Bins simulation is worse than the control
in 2003, Bins is a clear improvement in 2004, both models exceed observations in 2005, and both models
are reasonable in 2006. Statistically, the Bins simulations explain a larger fraction of observed variability
(Table 1; significant to 99%) for both LE and H, but not for NEE. Bins normalized error, where a smaller value
represents a better comparison, is smaller for LE, slightly larger for H, and similar to control for carbon flux.
Overall, our fidelity to observations is favorable when compared to previous studies [e.g., Liu et al., 2013;
Schwalm et al., 2010]. Our simulations are consistent with Schwalm et al. [2010], who found that grasslands
and crops were more poorly simulated than forests when compared across a suite of LSPs.

Similar to BR-PEG, the control wetness function f ðhWiÞ displays extreme variability in response to small
changes in mean soil wetness, as the wetness hWi resides on the steep part of the curve for much of the
simulation period (Figure 7, plot d). The Bins soil wetness function hf ðWÞi behaves smoothly.

In the control run, there was a general tendency for overestimation of latent heat at all times, but especially
during the summer months. LAI has peak value around 2, so potential transpiration is not large. We found
that soil evaporation in the control runs was approximately 80% of overall ET, which sometimes exceeded
observed ET by 30–40 W in the monthly average (Figure 8). In the Bins simulation, soil surface evaporation
was considerably reduced to the point where evaporation from soil is generally less than transpiration in
the monthly mean. This low surface evaporation was persistent even when hf ðWÞi was larger in the Bins
run than in the control. This is due to coupling bin-determined soil surface evaporation to the surface layer
wetness in Z-space. Once this surface Z-layer becomes dry, soil surface evaporation is suppressed regardless
of the value of hf ðWÞi. We believe that the partitioning and overall value of latent heat in the Bins formula-
tion is more realistic.
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The evolution of area in wetness bins over a single year (2001) at US-ARM is shown in Figure 9. Bin area has
reduced dynamic range and is concentrated in wetter bins when compared to BR-PEG, largely due to the
higher clay content at US-ARM, which moves wilt point and field capacity to higher relative wetness
(Figure 1). We find that there is not a concentration of area in the bins near wilt point (bins 5 and 6) during
the dry season, as there was at BR-PEG. This is likely due to the fact that the dry season at US-ARM is winter,
when LAI/fPAR are low, and temperatures are too cold for photosynthesis. Evaporation from surface soil can
also be suppressed by either frozen soil or snow. In January and February 2005, area was concentrated in
bin 8 due to wet fall months in 2004, but the peak moved to bin 7 in March due to both lack of precipitation
and increasing ET in spring. In the latter part of the year (Figure 9, plots b–d), area oscillated between maxi-
ma in bins 7 or 8 in response to precipitation and ET, and settled into bin 7 in response to dry months at
the end of the year.

Figure 7. Monthly averaged values of (a) net carbon exchange (NEE), (b) latent heat (LE), (c) sensible heat (H), and (d) soil stress function/
mean wetness of soil column for SiB3 control (red) and SiB3-Bins (blue) simulations at US-ARM) for years 2003–2006.

Table 1. Simple Statistics for US-ARMa

US-ARM

LE H NEE

STAT CTRL BINS CTRL BINS CTRL BINS

R2 0.33 0.54 0.30 0.45 0.42 0.24
NSEE 0.61 0.42 0.46 0.49 0.84 0.84

aShown are the fraction of variability in observations explained by each model, as well as the normalized standard error of the esti-
mate, for SiB3-control (CTRL) and SiB3-Bins (BINS) simulations. NSEE is calculated as the root mean square deviation between model
and observations divided by the root mean square of the observations.
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Curiously, the value of f(W) at US-ARM is consistently high, suggesting little or no restriction of plant behav-
ior by soil moisture. This is due to the vegetation at US-ARM, which has a maximum LAI of 1:522 m2 m22

for a brief period in spring in the MODIS retrieval. There is not enough leaf area to draw water out of the
soil, even when there is little or no stress on transpiration. The surface soil becomes desiccated relative to
the rest of the soil column, which has the effect in the Bins simulation of increasing resistance to soil surface
evaporation. In this manner, the evaporative fraction is lower compared to the control run, and variability
corresponds more closely to observations (Figure 7).

Figure 8. Partition of monthly mean total latent heat flux into transpiration, evaporation of water off canopy, and soil surface evaporation.
Evaporation of surface interception stores (puddles) is minimal. SiB3-control is shown in top plot, SiB3-Bins in the bottom plot.

Figure 9. Distribution of area for soil wetness bins 1–10 for year 2005 at US-ARM as simulated by SiB3-Bins. Bin distribution is plotted for
the last day of each month. Line colors are coded to precipitation amount; the three wettest months (January, February, November) are
shown in dark blue, the driest months (June, July, August) are deep red, and intermediate months are lighter shades of each.
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4. Discussion

In simulations at two distinctly different semiarid sites, we found that surface behavior was reproduced
when simulated using the Bins formulation compared with a control. The behavior was distinctly different
at tropical site BR-PEG where photosynthesis and transpirational removal of water from soil occurred
throughout the year, as opposed to US-ARM where ecosystem activity was dormant in winter. We found
this difference in seasonality resulted in significant changes in the evolution of bin area through the year,
above what was expected due to dissimilarities in clay and sand content in the soil. This demonstrates that
the Bins scheme is suited to simulate ecosystems across a range of variability in climate space.

The representation of moisture stress on transpiration is significantly different between the control and Bins
simulations. Figure 10 shows a period of drying and moistening at BR-PEG in 2001. From 12 May (after the
wet season has ended yet soils are still moist) to 12 September, there is little or no precipitation and soil
moisture decreases with attendant decrease in stress function value f(W) (Figure 10, plot a), whether deter-
mined by the area-mean value in the control simulation or by bin area distribution. The red curve shows
the control run, and this curve follows the very nonlinear form of equation (2) and Figure 1. The Bins behav-
ior is much different. At the beginning of the drying period (blue curve in plot a), hf ðWÞi is significantly
smaller than f ðhWiÞ, due to the existence of some area in bins where f ðWiÞ < 1. As the soil dries due to ET,
the reduction in Bins wetness function is muted compared to the control run (red), due to the transfer of
area from wetter to drier bins. It is only when root-weighted soil moisture approaches wilt point that the
Bins hf ðWÞi begins to drop steeply. A period of moistening between 12 September and 31 December is
also shown in Figure 10 in plots b and c. In the control moistening follows the same curve as drying but this

Figure 10. Soil moisture stress at BR-PEG as a function of root-weighted soil moisture for the SiB3 control run (red) and SiB3-Bins run
(blue), for the period 12 May to 31 December 2001. (a) Drying period, 12 May to 12 September, when there is little or no rain. (b) Rapid
moistening in the last 2 weeks of September. (c) Further moistening in November and December.
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control curve can move slightly left or right in response to variability in the relationship between vertical
moisture and root distributions. The form is essentially the same during both the drying and moistening
periods and follows the nonlinear form of the equation. Furthermore, extremely small changes in total soil
moisture can have drastic effects on the value of f ðhWiÞ, so that in the control simulation the ecosystem
can shift from extreme stress to no stress at all in just an hour or two, which is unrealistic. Bins moistening
and return of the stress function to values near 1 does not take place in a single rapid jump, but rather in
response to individual precipitation events that occur stochastically. In Figure 10 (plots b and c), we color-
code wetting events temporally, with darker-colored (blue) events happening earlier in the period of moist-
ening (13 September to 31 December). The initial precipitation event (12–30 September, Figure 10, plot b)
results in root-weighted column soil moisture content quickly rising, yet hf ðWÞi does not jump immediately,
as the movement of area into wetter bins is temporally buffered when compared to the control run in that
the incremental increase in soil moisture is reflected as small changes in bin area distribution and incremen-
tal rise in hf ðWÞi. Ecosystem-scale stress is eased through moistening that takes place on the scale of days
or weeks rather than hours. Through the end of the year, the overall trend is toward wetter soils, but this
happens in a pattern of wetting events separated by intervals where the soil dries somewhat. Figure 10
shows that the overall soil wetness increases from 30% of saturation in mid-September to 50–60% saturated
by the end of the year, but does so in a somewhat oscillatory fashion. Root-weighted soil wetness jumps up
during precipitation events, and drops during drying intervals, all the while moving toward a general trend
of increasing soil moisture. Superimposed on this trend is the behavior of hf ðWÞi, which is slowly increasing
as area is moved into wetter bins. This can also be seen in plot d of Figure 5, where the value of f ðhWiÞ
(red) jumps rapidly to 1.0 while the value of hf ðWÞi (blue) increases at a slower rate.

Vertical distribution of water can vary in the Bins simulations. It is possible to have multiple vertical distribu-
tions of water in Z-space for a single PDF of bin area. Similarly, a given vertical distribution of water in
Z-space is not associated with a unique PDF of bin area. While water in Z-space and B-space is self-
consistent and functionally linked, differences between Z-space soil water and the value of hf ðWÞi result in
a subtle range of responses of soil surface evaporation and transpiration to precipitation events in SiB3-Bins
that appear to be more realistic than the simulations generated by the control runs.

5. Conclusions and Further Research

The implementation of the Bins scheme of SE07 into a 1-D version of a modern LSP, SiB3-Bins, has been suc-
cessfully accomplished with negligible additional computational burden. The reconciliation of the original
vertically oriented SiB3 (Z-space) with the Bins scheme abstraction (B-space) was achieved relatively simply
and balances water when compared between B-space and Z-space. We find that SiB3-Bins has improved
simulation of the time-variation of evapotranspiration rates during drydown when compared to SiB3-
control, mainly due to the smoothing effects of accounting for the effects of soil moisture spatial variability
in the area-averaged hf ðWÞi and hRsoili calculations. We also simulate smoother recovery of evapotranspira-
tion rates when exiting from drydowns in SiB3-Bins. Note that entry into and recovery from drydowns give
rise to apparent hysteresis in the area-averaged hf ðWÞi function. We believe this attenuated response is
more realistic when compared to SiB3-control simulations that can switch from extreme stress to no stress
in a matter of hours.

The focus of the research presented here was to determine whether the Bins method for representing spa-
tial heterogeneity in soil wetness is viable when installed into a more complex land model as opposed to
the extremely simple model of SE07. With that viability established, we can turn attention to expanding the
research scope.

Performing global simulations of surface flux driving SiB3-Bins with reanalysis data are a natural next step.
We will be able to evaluate behavior against other established models and study SiB3-Bins simulation of
recent drought events such as those in Amazonia in 2005, 2010, and 2015, Russia in 2010, and the central
USA in 2012.

In the present application, topography is not considered. There is no transfer of water from bin to bin, such
as might happen when runoff from hillslopes (perhaps representing dry bins) collects in riparian areas (wet
bins). SiB3-Bins is naturally extendable to use data such as topographic index to calculate between-bins sur-
face and subsurface runoff. Currently both surface and subsurface runoff leave the grid cell. Allowing
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between-bin flow from hilltop to riparian areas in a manner analogous to some of the statistical-dynamics
approaches could enhance realism in SiB3-Bins.

The treatment of precipitation partition into stratiform and convective components has long been problem-
atic in LSPs, and is neglected in many treatments of surface heterogeneity. Treatment of stratiform precipi-
tation is simple, as this rain/snow can be expected to fall over the entire grid cell. Convective precipitation,
on the other hand, is problematic for models to simulate. One option is to distribute rainfall from convective
cells across the entire GCM grid cell. In this case, the convective precipitation will fall as light rain or mist,
and frequently evaporates directly off leaves without ever reaching the soil and unrealistically enhances ET
[Shuttleworth, 1988]. Alternatively, convective rain can be calculated to impact only a fraction of the vegeta-
tion, where buildup on leaves quickly exceeds storage capacity, runs off, and is available at the soil surface
for runoff or infiltration. In the latter case, infiltrated rainwater is immediately present over the entire grid
cell. The Bins paradigm offers a solution, in that convective rainfall can impact a fraction of each wetness
bin. In this case, the high impact of heavy rain over a small area will be manifest as buffered changes in wet-
ness bin distribution, and large excursions of grid cell-level behavior (or no impact, in the mist case) will not
result.

We have demonstrated that SiB3-Bins is not limited to the simple application of SE07, and can in fact func-
tion when installed in a more complex model with explicit treatment of physical processes. SiB3-Bins per-
forms similarly to a control simulation, and improves representation of some aspects of surface flux in
experiments performed at two sites that experience water limitation within traditional modeling frame-
works. The partitioning of area into a distribution of bins of varying wetness is an emergent property of
model construction, and provides a novel new treatment of moisture heterogeneity on GCM-scale grids
that exhibits promise for future research.
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