
Sensitivity, uncertainty and time dependence of
parameters in a complex land surface model

L. Prihodko a,*, A.S. Denning b, N.P. Hanan a, I. Baker b, K. Davis c

aNatural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, 80523-1499, USA
bDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado, 80523-1371, USA
cDepartment of Meteorology, Pennsylvania State University, University Park, Pennsylvania, 16802-5013, USA

a g r i c u l t u r a l a n d f o r e s t m e t e o r o l o g y 1 4 8 ( 2 0 0 8 ) 2 6 8 – 2 8 7

a r t i c l e i n f o

Keywords:

Parameter sensitivity

Uncertainty

Data assimilation

Monte Carlo

GLUE

SiB

WLEF

a b s t r a c t

This paper explores the use of Monte Carlo carbon cycle data assimilation within the general-

ized likelihood uncertainty estimation (GLUE) frameworktoevaluate thesensitivitiesofa well-

known complex land surface model (SiB v2.5) to its parameterization and the predictive

uncertainty of simulated fluxes on a monthly basis, and for an entire year, at the WLEF tall-

tower site in Park Falls, Wisconsin. An analysis is described wherein randomly generated

parameter sets were ranked based on their capacity to simulate fluxes of latent (LE) and

sensible heat (H) and the net ecosystem exchange of carbon (NEE) for each month of the year

1997 and for the entire year. Two criteria were used to evaluate the success of the simulations;

the first evaluated the ability of SiB2.5 to simulate LE and H, the second included NEE as an

additional constraint. The best-performing parameter sets for each criterion were used to

assess model sensitivityto parameters, to calculate uncertaintybounds for predicted LE, H and

NEE and to assess the information content of eddy covariance data on the analyzed time

scales. Patterns in the sensitivity of the model to its parameterization and the uncertainty of

the predictions were related to the physiological and phenological characteristics of the

ecosystem, model structure and the relationship between deterministic models and com-

paratively stochastic measurements. The results show that model sensitivity varies through

time for a larger set of parameters than those typically considered time varying in LSMs, thus

optimization of model parameters on tower flux data should allow for variability at sub-

annual time scales in order to capture the most information and best simulate fluxes. Further,

constraining predictions annually versus monthly showed that some quantities (e.g. night-

time NEE) were on average better constrained annually, whereas other quantities that show

more variability with vegetationphenology and structure (e.g.daytime NEEand LE) werebetter

constrained monthly. The addition of the net ecosystem exchange of carbon in the data

assimilation scheme improved model results by (a) constraining model parameterization

(optimal parameter values), particularly during times of the year when the land surface was

rapidly changing (spring and fall), and increasing the number of influential parameters, and (b)

decreasing the uncertainty in NEE simulations (but not appreciably reducing uncertainty in LE

andH simulations). Wealso foundthat therewasanirreducible levelofmismatchbetween the

simulated and observed fluxes that could not be overcome through optimization due to

variability in the observations and/or structural problems with the model. The uncertainty

estimates can be used to characterize uncertainty in the simulations at multiple time scales.
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1. Introduction

Simulation models can never fully represent every component
and process in a complex ecosystem, it would be impractical

and unproductive to do so. Thus, approximations and
compromise solutions are always necessary at some level.
Consequently, a principal characteristic of simulation models
is that they utilize parameters. Parameters in models are
either measurable terms that are used to define the system
and determine its behavior or are terms that represent
important processes that for some reason (practical or
theoretical) cannot be described in detail. Like models,
parameters themselves can be imperfect representations of
reality. If a parameter value is poorly defined, if it cannot be
accurately measured, or if it is not sufficiently representative,

it will introduce uncertainty into modeled results depending
on the sensitivity of the model to that parameter. Further,
complex models with many parameters are often over-
parameterized. That is, they contain parameters that con-
tribute little to the simulation but have a cost associated with
them in terms of computation time or definition. A conse-
quence of over-parameterization in complex models is a
tendency towards equifinality, where compensation between
parameters can result in equally good simulations across a
wide range of parameter values (Beven and Freer, 2001; Fedra
et al., 1981; Franks, 1998; Franks et al., 1997; Spear et al., 1994).

Equifinality leads to increased uncertainty in predictions as a
result of uncertainty in parameterization (Schulz and Beven,
2003).

Biophysical land surface models (LSMs), which simulate
fluxes of energy and mass between the atmosphere and the
land surface, are used to study land surface dynamics, to
generate surface conditions in atmospheric models and to
elucidate the processes contributing to land surface fluxes.
Typically these models are quite complex and can easily have
more than 40 parameters, putting them at risk of over-
parameterization and equifinality. At present, biophysical
LSMs coupled to regional and global atmospheric models are

playing a large role in advancing our understanding of carbon
cycle dynamics and associated changes in weather and
climate (Bounoua et al., 2002; Collatz et al., 2000; Cox et al.,
2000; Denning et al., 1995; Pielke et al., 1998). Because of their
importance in determining potential trajectories for global
and regional climate change, it is important that we under-
stand the strengths and weaknesses of these models, how
they could be improved and what level of uncertainty is
associated with their predictions.

A relatively new development, and promising approach to
this problem, has been termed carbon cycle data assimilation

(CCDA) (Braswell et al., 2005; Kaminski et al., 2002, 2003; Knorr
and Kattge, 2005; Rayner et al., 2005; Wang et al., 2001), where
atmospheric CO2 concentration data, CO2 flux measurements
and other observational data are used to optimize a land
surface model. The primary goals of CCDA have been to
improve the parameterization and predictive power of land
surface process models, to quantify the uncertainty in the
surface fluxes and models, and to increase the amount and
kinds of data that can be used to constrain atmospheric
inversions (Kaminski et al., 2002). Initial work with a relatively
simple land surface model (two parameters to optimize) has

shown that both CO2 concentration data and CO2 flux
measurements can provide powerful constraints on model
parameters and the resulting predictions of fluxes (Kaminski
et al., 2002). Both non-linear inversion and Monte Carlo

methods of CCDA (Braswell et al., 2005; Kaminski et al., 2002;
Knorr and Kattge, 2005; Mo and Beven, 2004; Rayner et al., 2005;
Schulz et al., 2001; Wang et al., 2001) show more promise than
standard methods of sensitivity and uncertainty analysis such
as varying one parameter at a time (El Maayar et al., 2002;
Potter et al., 2001) or factorial methods (Henderson-Sellers,
1993) because these methods can better account for non-
linearity in the model and parameter interactions, while also
providing more robust estimates of uncertainty in model
predictions.

This paper explores the use of Monte Carlo CCDA within

the generalized likelihood uncertainty estimation (GLUE;
Beven and Binley, 1992) framework to evaluate the sensitivity
and uncertainty of a well-known land surface model, the
Simple Biosphere Model (SiB2.5; Baker et al., 2003; Sellers et al.,
1996b) that has been variously used to simulate water, heat
and carbon fluxes for single ecosystems as well as run coupled
to regional and global circulation models (Baker et al., 2003;
Colello et al., 1998; Denning et al., 1996a,b, 2003; Nicholls et al.,
2004; Randall et al., 1996). SiB2.5 is a complex, highly non-
linear model with a large number of parameters and
interactions between them are expected to be important.

Operational values for these parameters are often poorly
known and so a wide range of possible (but realistic) values for
them should be tested. The strengths and flexibility of Monte
Carlo style data assimilation are well suited to the problem of
analyzing the sensitivity of SiB2.5 to its parameterization
because these methodologies allow for the assessment of non-
linear interactions between parameters (Bastidas et al., 1999;
Beven and Freer, 2001; Fedra et al., 1981; Franks, 1998; Franks
et al., 1997; Hornberger and Spear, 1981; O’Neill et al., 1982;
Spear and Hornberger, 1980). Further, even though Monte
Carlo methodologies are computationally expensive, they are
relatively simple to set up and run in a distributed computing

system.
We chose the GLUE methodology over others because

rather than model optimization per se, we wanted to explore
the model error space to determine which parameters are
most influential and therefore should be most carefully
evaluated for effective simulations. We tried to cast a wider
net than Markov Chain Monte Carlo (Braswell et al., 2005;
Knorr and Kattge, 2005) or non-linear inversion methods
(Wang et al., 2001), which tend to focus on optimization, by
looking at 10s of thousands of possible parameter sets and
exploring the impact of these on simulated fluxes. Further, the

GLUE methodology is well suited to cases where there are
many parameters, little a priori knowledge of parameter
distributions and a risk of equifinality. Similar to other
methods, the robustness of sensitivities and uncertainties
are dependant on how the problem is set up, but because these
choices are clearly defined the results can be interpreted
accordingly. The GLUE methodology is well established in
hydrological model applications (Beven and Binley, 1992;
Beven and Freer, 2001; Brazier et al., 2000, 2001; Franks et al.,
1998; Freer and Beven, 1996; Romanowicz et al., 1994) and is
also well suited to land surface-atmosphere models, since it
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implicitly handles non-linear interactions. The number of
studies using this framework for land surface-atmosphere
modeling is steadily increasing (Franks and Beven, 1999;
Franks et al., 1999, 1997; Mo and Beven, 2004; Schulz and

Beven, 2003; Schulz et al., 2001).
In this paper we evaluate model sensitivities and uncer-

tainties associated with parameters evaluated using remotely
sensed data, literature values and measurements at monthly
and annual time scales for the WLEF tall-tower site in Park
Falls, Wisconsin. In particular, the objectives of this study are
to identify parameters that, if more accurately known, would
improve the results of the model; to evaluate the appropriate-
ness of conditioning model parameters on different time
scales and to assess whether the assimilation of NEE
measurements helps to constrain model parameterization

and uncertainty and thus improve the simulation of energy
and water fluxes as well.

Analyzing the sensitivity and uncertainty of model
simulations to parameterization can lead to insights about
model structure and system behavior that would not
ordinarily be evident simply from simulation results (Franks
et al., 1997; O’Neill et al., 1982). Unexpected significance of a
parameter or lack of significance can lead to questioning of our
mechanistic understanding and the relative role of different
processes. Sensitivity and uncertainty analyses are also useful
for guiding research priorities. Knowing which parameters are

most influential in a model, or under what circumstances
simulated fluxes are most uncertain, can help focus research
efforts in those areas where more attention would bring
proportionately more benefit in terms of predictive accuracy
(Hornberger and Spear, 1981; Spear and Hornberger, 1980).

2. Methods

2.1. Site description

The WLEF-TV tower (90.288W, 45.958N) is located within the

Chequamegon Nicolet National Forest in the northern high-
lands region of Wisconsin, approximately 100 km south of
Lake Superior. Micrometeorological, eddy covariance and CO2

concentration measurements have been made since 1995 on
this tall tower (Bakwin et al., 1998; Berger et al., 2001; Davis
et al., 2003). The vegetation of the region is composed of mixed
northern hardwoods, upland Jack and Red pine, lowland
conifers, aspen and wetlands (Burrows et al., 2002; Wisconsin
Department of Natural Resources (WiDNR), 1998). Much of the
area was logged from 1860 to 1920 and has since re-grown
(USDAFS, 2001). The topography is mild, with a local relief of

up to 45 m, and elevations reaching to approximately 450 m
above sea level (Burrows et al., 2002; Davis et al., 2003; Martin,
1965). The climate of the area is cool continental with a 30-year
(1971–2000) annual average mean temperature of 4.9 8C
(!12.3 8C average in January; 19.6 8C average in July) and
annual precipitation averaging 815 mm year!1 (MRCC, 2002).

2.2. Meteorological and flux data

Wind speed and direction, air temperature and relative
humidity are measured on the tall tower at 30, 122, and

396 m while atmospheric pressure, precipitation, photo-
synthetically active radiation (PAR) and net radiation are
measured at the surface in the clearing surrounding the tower
(Bakwin et al., 1998; Berger et al., 2001; Davis et al., 2003). These

measurements were averaged at hourly intervals. Incoming
long-wave radiation was not measured, so the method of Idso
(1981) was used to estimate long-wave radiation from air
temperature and humidity. A hierarchical sequence of
methods was used to fill gaps in the meteorological data
due to intermittent instrument or data logger failures. Baker
et al. (2003) give a thorough description of this process. The
filled meteorological variables used in this paper are: air
temperature, dew point temperature and wind speed at 122 m,
atmospheric pressure, incoming long-wave radiation, incom-
ing short wave radiation and precipitation at the surface.

High frequency flux observations of latent (LE) and sensible
heat (H) and the net ecosystem exchange of CO2 (NEE) are also
made on the tall tower at three heights (30, 122 and 396 m)
(Bakwin et al., 1998; Berger et al., 2001; Davis et al., 2003). At
each of these heights three-dimensional wind speeds, sonic
temperature and the mixing ratios of CO2 and H2O are sampled
at 5 Hz and fluxes computed at hourly intervals. In addition,
the mixing ratio of CO2 and H2O are measured at three other
heights (11, 76 and 244 m). Lag and frequency response
corrections were applied to the flux estimates, and the mixing
ratio profiles were used to estimate storage terms below each

measurement height. ‘Preferred’ estimates of terrestrial NEE,
LE and H were then selected from among the three measure-
ment heights based on atmospheric conditions (Davis et al.,
2003). The ‘preferred’ values used in the following analyses are
considered to best represent the heterogeneous landscape in
the area by maintaining a large, consistent flux footprint while
lessening the influence of the cleared patch (radius 200 m)
underneath the tower (Davis et al., 2003).

For this paper, flux and meteorological data from the year
1997 were used. Year 1997 was chosen because conditions
were close to the 30-year average for temperature and
precipitation and because it was the first full year of flux data

collected at WLEF. The data were also thoroughly analyzed in a
paper by Davis et al. (2003). Overall, 90% of NEE observations
and 85% of the possible observations of H and LE were
available.

2.3. Model description

The Simple Biosphere Model version 2 (SiB2; Sellers et al.,
1996b) is a single canopy-layer scheme describing the
transfers of heat, water, momentum and carbon in the soil-
vegetation atmosphere continuum. SiB2’s physical model of

radiation balance, heat and water transport conserves mass
and energy. SiB2 incorporates leaf-level physiology controlling
photosynthesis (Collatz et al., 1992, 1991; Farquhar et al., 1980)
and the Ball–Berry (Ball et al., 1987) description of stomatal
behavior which links water loss and carbon assimilation.
Canopy scale calculations of carbon and water fluxes are
estimated from leaf-level physiology and exchange using a
canopy integration factor (P) that is related to the extinction of
photosynthetically active radiation (PAR) through the canopy
(Sellers et al., 1992). P reflects the assumption of continuously
varying stomatal conductance, carbon assimilation, and
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rubisco velocity vertically in the canopy in response to the
time-mean distribution of light, with nitrogen allocation
responding accordingly (Field and Mooney, 1986). The integra-
tion factor provides a scaling relationship between canopy

scale fluxes and larger spatial scales. More importantly, P can
be estimated over large areas because it is proportional to the
fraction of absorbed photosynthetically active radiation ( fPAR)
which in turn is near linearly related to remote sensing
estimates of the normalized difference vegetation index
(NDVI) (Sellers, 1985, 1987).

In SiB2 the annual integral of ecosystem respiration is
assumed to be equal to the annual integral of gross primary
production. Respiratory losses are parameterized diurnally and
seasonally by partitioning respiration between the six soil
layers and the surface and regulating the respiration rate

through temperature, moisture and soil texture (Denning et al.,
1996b; Raich and Nadelhoffer, 1989). When run at an annual
time scale with this parameterization there is a net zero balance
of carbon into and out of the system. At WLEF in 1997 a net zero
balance of carbon into and out of the system is a reasonable
assumption, measured NEE was 16" 19 g C m!2 year!1 (Davis
et al., 2003).

The most recent version of the model, SiB2.5 (Baker et al.,
2003), includes prognostic equations describing transfers of
heat, water and carbon that also account for canopy air-space
storage. Also incorporated into SiB2.5 is a six-layer soil

temperature model, an update from the three-layer model
in previous versions. Flux output from SiB2.5 was averaged
from the 10-min model time step to hourly output, to
correspond with the observational time step. Baker et al.
(2003) have previously demonstrated the ability of SiB2.5 to
simulate fluxes of heat, water and CO2 at the WLEF tall-tower
site.

2.4. Generalized likelihood uncertainty estimations (GLUE)

The GLUE methodology can be thought of as a model analysis
framework that includes the following basic components

(Beven and Binley, 1992): (1) a formal definition of a likelihood
measure, (2) an appropriate initial distribution of parameter
values, (3) a procedure for using likelihood weights in
uncertainty estimation, (4) a procedure for updating likelihood
weights and (5) a procedure for evaluating uncertainty and the
value of additional data. The GLUE methodology utilizes
probabilistic likelihood measures to weight model predictions
and calculate uncertainty bounds (Beven and Binley, 1992).
Bayes theorem is used in GLUE applications to calculate
weights from likelihoods and to update likelihood weights
with new information as it becomes available.

2.5. Parameters

The parameters for SiB2.5 that were evaluated in this paper are
those that are determined external to the model and which
characterize land surface conditions using a combination of
land cover type, monthly maximum NDVI and soil properties.
They can be further subdivided into time invariant parameters
(40; Table 1) and time-varying parameters (8; Table 2). Time
invariantparameters for the purposeof thispaper are those that
aresetatthebeginningofasimulationandfixedfor the lengthof

the simulation, but which vary in space based on biome, soil
type and geographical location. Time-varying parameters are
thosethatchangeat intervalsshorterthanthetimeperiodofthe
simulation. Typically these parameters change once a month to

represent changes in vegetation phenology throughout the
year. The majority of parameters in Table 1 are defined from the
literature and are assigned by biome, of which there are 9
distinct types in SiB2.5 (Sellers et al., 1996a). For WLEF, the
vegetation was classified as mixed deciduous and coniferous
forest. The soil hydraulic and thermal properties are calculated
from the percent sand and percent clay of the soil using the
equations of Cosby et al. (1984) while the parameters used in
calculationsofsoilheterotrophicrespirationareestimatedfrom
the percent clay of the soil using curves fit to data in Raich et al.
(1991) (Schaeffer, Colorado State University, personal commu-

nication).ThesoilatWLEFwasdefinedasconsistingof37%sand
and 15% clay, which was determined from the STATSGO soil
database (Staff, 1994). The time-varying parameters listed in
Table 2 are estimated either directly or indirectly from NDVI
data using the methods of Los et al. (2000) and Sellers et al.
(1996a,b). Here they were calculated from an annual series of
monthly mean NDVI from 8 km Advanced Very High Resolution
Radiometer (AVHRR) data for 1997 (Tucker et al., 2005).
GMUDMU, the time-mean leaf projection, is not estimated
from NDVI but varies at a monthly time step depending on
canopy type, solar declination and latitude. Standard para-

meters for 1997 for the WLEF site are given in Tables 1 and 2.

2.6. Parameter set generation

For this experiment 46 parameters were randomly varied
within physically reasonable ranges, assuming a uniform
distribution for all parameters (Tables 1 and 2). Such a large
number of parameters were varied in order to allow for
unexpected interactions. Uniform distributions of parameters
were chosen because there was no reliable information from
which to calculate other statistical distributions. While
choosing uniform distributions might make the results more

sensitive to the extreme parts of the parameter range, there is
evidence that if parameter ranges are sufficiently large yet also
reasonable, any negative effects of a uniform distribution are
greatly diminished (O’Neill et al., 1982).

Time invariant parameters were for the most part
independently randomized. However, in a few situations it
was not physically realistic to vary parameters independently.
For example, canopy base height (Z1) cannot be higher than
canopy top height (Z2). In six cases parameters were made
partially dependent on other parameters. For five of the
parameters (Z1, ROOTD, TRDM, HHTI, SOREF2) a randomiza-

tion interval was selected (see Table 1) and the random value
(R) within this range was multiplied by the independent
parameter (I) to give the new parameter value (P):

P ¼ IR (1)

In this way, parameter Z1 (canopy base height) is partially
dependent on Z2 (canopy top height), ROOTD (rooting depth)
is partially dependent on SODEP (soil depth), TRDM
(respiration inhibition 1/2-point temperature) is partially
dependent on TROP (respiration optimum temperature),
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HHTI (photosynthesis high temperature inhibition 1/2-point)

is partially dependent on HLTI (photosynthesis low tempera-
ture inhibition 1/2-point) and SOREF2 (soil near infrared
reflectance) is partially dependent on SOREF1 (soil visible
reflectance). In the sixth case, canopy inflection height (ZC)
was made partially dependent on both canopy top height (Z2)
and canopy base height (Z1) as follows:

ZC ¼ ðZ2 ! Z1ÞRþ Z1 (2)

Six parameters that are used to calculate the time-varying
parameters were also varied, they are: LWIDTH (leaf width),

LLENGTH (leaf length), LTMAX (maximum leaf area index),

STEM (stem area index), ND98 (98th percentile NDVI by biome)
and ND02 (2nd percentile NDVI by biome). These six
parameters are used with the seasonally varying NDVI to
calculate the following time-varying parameters: fractional
absorbed photosynthetically active radiation ( fPAR), leaf area
index (ZLT), greenness fraction (GREEN), roughness length
(Z0D), displacement height (ZP_DISP), a coefficient for bound-
ary-layer resistance (CC1) and a coefficient for canopy-layer
resistance (CC2). These parameters were varied, instead of
independently adjusting the time-varying parameters, to
preserve the gross seasonal changes in the NDVI data while

Table 1 – List of parameters varied in this experiment

Parameter Definition Minimum Maximum WLEF

Z2 Canopy top height (m) 10.0 30.0 20.0
Z1 Canopy base height (m) 0.2a 0.8a 10.0
ZC Canopy inflection height (m) 0.3a 0.8a 15.0
VCOVER Vegetation cover fraction 0.5 1.0 0.9875
CHIL Leaf angle distribution factor !0.5 0.5 0.125
ROOTD Rooting depth (m) 0.2a 0.9a 1.5
PH 1/2 critical leaf water potential (m) !450.0 !50.0 !200.0
TRAN11 Green leaf transmittance (PAR) 0.0 0.1 0.05
TRAN21 Green leaf transmittance (NIR) 0.05 0.3 0.15
TRAN12 Brown leaf transmittance (PAR) 0.0 0.1 0.001
TRAN22 Brown leaf transmittance (NIR) 0.0 0.1 0.001
REF11 Green leaf reflectance (PAR) 0.02 0.2 0.07
REF21 Green leaf reflectance (NIR) 0.2 0.5 0.38
REF12 Brown leaf reflectance (PAR) 0.05 0.25 0.16
REF22 Brown leaf reflectance (NIR) 0.2 0.5 0.42
VMAX0 Rubisco velocity of sun leaf (mol m!2 s!1) 2.5E!5 15E!5 7.5E!5
EFFCON Quantum efficiency (mol mol!1) 0.03 0.13 0.08
GRADM Conductance–photosynthesis slope parameter 3.0 18.0 9.0
BINTER Minimum stomatal conductance (mol m!2 s!1) 0.0 0.02 0.01
ATHETA Light and rubisco coupling parameter 0.5 1.0 0.98
BTHETA Light, rubisco and CHO sink parameter 0.5 1.0 0.95
TRDA Respiration temperature response (K!1) 0.1 1.5 1.3
TRDM Respiration inhibition 1/2-point temperature (K) 1.04a 1.1a 328.16
TROP Respiration optimum temperature (K) 283.0 308.0 298.16
RESPCP Leaf respiration fraction of VMAX 0.01 0.1 0.015
SLTI Photosynthesis low temperature response (K!1) 0.1 1.5 0.2
SHTI Photosynthesis high temperature response (K!1) 0.1 1.5 0.3
HLTI Photosynthesis low temperature inhibition 1/2-point (K) 270.0 290.0 280.66
HHTI Photosynthesis high temperature inhibition 1/2-point (K) 1.04a 1.1a 307.16
BEE Soil wetness exponent 4.0 8.5 5.29
PHSAT Soil water potential at saturation (m) !0.05 !0.35 !0.25
SATCO Saturated hydraulic conductivity 2.5E!6 100E!6 3.4E!6
POROS Soil porosity 0.3 0.5 0.44
SLOPE Cosine of mean terrain slope 0.1 0.25 0.1736
WOPT Optimal percent of soil saturation for respiration 30.0 80.0 62.12
ZM Skewness exponent of respiration vs. soil water !0.2 0.5 0.362
WSAT Respiration rate at soil water saturation coefficient 0.5 0.8 0.537
SODEP Soil depth (m) 0.5 4.0 2.0
SOREF1 Soil reflectance (PAR) 0.01 0.4 0.11
SOREF2 Soil Reflectance (NIR) 1.1a 1.5a 0.22
LWIDTH Leaf width (m) 0.003 0.1 0.04
LLENGTH Leaf length (m) 0.03 0.4 0.1
LTMAX Maximum leaf area index 4.0 9.0 7.5
STEM Stem area index 0.0 0.25 0.08
ND98 98th percentile NDVI (over 12 months, by biome) 0.5 1.0 0.686
ND02 2nd percentile NDVI (over 12 months, by biome) 0.0 0.1 0.034

The minimum and maximum values of the uniform distribution used to assign random parameters values are given. The WLEF site value
typically used for point simulations is also given.
a Min/max values are multipliers for parameters that depend on others (see text Eqs. (1) and (2)).
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still altering the range of calculated values. In other words, the
land surface will still have more active vegetation in the
summer months than in the winter, but the timing of leaf-on
and leaf-off as well as the magnitude of the vegetation

changes will be altered.
The model was run with the same forcing data for six

annual cycles to equilibrium to define soil moisture and soil
temperature profiles for each set of parameters. The
assumption is that the resultant soil temperature and
moisture profiles should approach some equilibrium
between the weather forcing and the model dynamics for
the study area. Without a spin up, modeling results are
sensitive to the transient. That is, if initial conditions are
poorly specified for a particular model configuration, the
effect will be anomalous results for an undetermined period

of time as the model adjusts to the initial conditions. In this
study the focus is on the parameterization of the model as
opposed to dependence on initial conditions and so spin up
of the model was considered beneficial. Further, by spinning
up for each parameter set using the same climate data,
common properties of the simulation are preserved and
sensitivities to the parameters are more straightforward to
interpret.

Simulations were carried out using 20,000 sets of randomly
generated parameters, which give a small, but important,
range of variation in combinations of parameters. The number

of simulations directly impacts the robustness of both
parameter sensitivities and uncertainty estimates, more
simulations would increase the power of the results. This is
particularly important in cases where optimization is the goal.
However, in this paper we are exploring the more general case
of model-data mismatch and so we tried to balance computa-
tional cost and representation of variability, since it would be
infeasible to simulate all possible parameter combinations.

2.7. Goodness of fit criteria

Goodness of fit (or likelihood) measures used to rank the

success of a simulation can be based on a single objective
criterion or on multi-objective criteria that combine several
comparisons between observations and simulations (Bastidas
et al., 1999; Franks, 1998; Franks et al., 1999; Gupta et al., 1998,
1999; Meixner et al., 1999; Schulz et al., 1999, 2001). Both are
useful for analyzing model sensitivity, however multi-objec-
tive criteria add additional constraints on model performance
and parameter interactions. On the other hand, in multi-
objective approaches there is generally no unique, best
solution for all criteria (Beven and Binley, 1992; Gupta et al.,
1999; Yapo et al., 1998).

Both single and multi-objective goodness of fit statistics
were calculated for each of the 20,000 runs, comparing
predicted hourly fluxes with observed fluxes within each
month and for the full year. For the single objective criteria the
root mean square difference (RMSD) between the observed
and estimated values of LE, H and NEE was calculated, giving a
goodness of fit statistic in units of flux. For the multi-objective
criteria a likelihood function developed by Franks (1998) was
used (Eq. (3)). This likelihood function utilizes the variance of
errors normalized by the minimum variance of errors and thus
permits the multi-objective criteria to include variables with
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disparate units (in this case Watts and micromoles) and
different dynamic ranges.

LðujY; s2
a; s

2
b; . . .Þ ¼ s2

a

ŝ2
a

 !
s2

b

ŝ2
b

 !
. . .

 !!N

(3)

Where u is the parameter set, Y the forcing data, s2
a the

variance of errors for a particular variable (in this paper we
evaluate NEE, LE and H), and ŝ2

a is the minimum of the variance
of errors for the time period (in this paper either a single
month or the annual cycle). Combined likelihood statistics
were calculated for LE and H and for LE, H and NEE, giving two
unitless goodness of fit statistics. The minimum possible like-
lihood value for the multi-objective criteria is one and like-
lihood values close to one represent model runs with the least
amount of error in predicted versus observed fluxes.

The scaling factor N in Eq. (3) is used to weight higher
performing parameter sets more heavily when the likelihood
value is used as a cut-off to distinguish good simulations from

bad (Franks, 1998). However, in this paper we chose to use a
percentage of runs for further analysis because it is difficult to
determine what an acceptable fit for a model is given that
errors in the observations are not easily quantified. A perfect
fit is not a reasonable assumption. Thus, we have set the
scaling factor N to negative one such that the likelihoods were
not rescaled.

Plots of the likelihood statistic versus parameter value
show patterns in sensitivity or equifinality for each para-
meter/month combination (Beven and Freer, 2001; Franks
et al., 1997; Mo and Beven, 2004; Schulz and Beven, 2003;

Schulz et al., 2001). Fig. 1 shows an example of the parameter
ND98 for April and July. ND98 is the biome type specific 98th
percentile value of NDVI used to calculate fPAR. In April there is
a higher density of points with lower likelihood values (better
simulations), particularly toward the lower range of ND98.
This suggests that in April, lower values of the parameter
ND98 are important for successful model runs. In contrast,
the scatter of points is more uniform in July, indicating less
sensitivity and a tendency towards equifinality (i.e. equally
good simulations can be found across the full range of ND98
values).

2.8. Parameter sensitivity

The model runs were sorted based on the likelihood estimate
for each month and for the annual cycle and the top 10% of the
runs in each case were retained for further evaluation. Within
the top 10% of runs, the cumulative frequency distribution for
each parameter, multi-objective criteria, month and the
annual cycle were calculated. Cumulative frequency gives

an indication of parameter sensitivity when it deviates from
an expected distribution (Bastidas et al., 1999; Franks et al.,
1997; Hornberger and Spear, 1981; Meixner et al., 1999; Schulz
et al., 1999; Spear and Hornberger, 1980). Fig. 2 shows an
example for ND98 for April and July. In July the retained runs
collapse toward the 1:1 line (equivalent to a uniform
distribution), indicating a lack of sensitivity to the parameter
across the full range of ND98. In April there is clear separation
between the retained runs and the uniform distribution. The
area of steepest slope indicates where the majority of

Fig. 1 – Plots showing the LE, H likelihood statistic against the ND98 parameter for (a) April and (b) July 1997. Smaller
likelihood values represent better simulations. The range of likelihood values (y-axis) is the same on both plots for
comparison purposes. Simulations with computed likelihoods >10 are therefore not shown. For April this range of
likelihood values includes approximately 94% of the 20,000 simulations, but only 43% of the simulations in July. The
distribution of the full dataset for July is similarly uniform.

Fig. 2 – Cumulative frequency distribution of parameter
ND98 for the LE, H multi-objective criterion for the months
of April (thick black) and July (thick grey), 1997. The
uniform distribution (thin black) shows the expected
relationship for ‘non-sensitive’ parameters. July and the
uniform distribution are almost indistinguishable.
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parameter values fall and provides a first estimate of optimal
parameter values in cases where the model is sensitive to that
parameter.

A Kolmogorov–Smirnov (K–S) test (Sokal and Rohlf, 1981)

was performed to assess the difference between the observed
and expected (uniform) distribution and determine the
significance. The model was considered sensitive to a
parameter if the K–S test statistic was significant at the
p = 0.01 level. However, the higher the K–S value, the more
sensitive the model is to the specification of that parameter,
thus the K–S test statistic can be used to rank the parameters
(Hornberger and Spear, 1981). The K–S test statistic has been
used successfully in previous sensitivity tests (Bastidas et al.,
1999; Hornberger and Spear, 1981; Meixner et al., 1999; Spear
and Hornberger, 1980). The total number of sensitive para-

meters was calculated in this way for both multi-objective
criteria, for all time period/parameter combinations, and the
parameters were ranked by sensitivity.

2.9. Uncertainty estimation

The simulations of H, LE and NEE associated with the retained
parameter sets for each month and the full year were used to
estimate uncertainty bounds attributable to parameter
uncertainty in each time period. In this case the likelihood
values for each retained parameter set were recalculated using

the shaping factor N in Eq. (3) set to 1. Including N does not
change the rank order of the results but does weight better
simulations proportionately more (Franks et al., 1999). Eq. (4),
from Beven and Freer (2001), illustrates how the posterior
likelihoods for each of the retained simulations are calculated.

L½MðuiÞ( ¼
Lo½MðuiÞ(LT½MðuijYT;ZTÞ(

C
(4)

Where Lo[M(ui)] is the prior likelihood for the vector of pre-
dicted fluxes using the SiB model with the ith set of para-
meters; LT[M(uijYT, ZT] the likelihood measure calculated for

the model with parameter set ui over time period T condi-
tioned on the forcing data YT and observed fluxes ZT, L[M(ui)]
the posterior likelihood and C is a scaling constant such that
the cumulative sum of the posterior likelihoods for the
retained runs equals one. Because we used non-informative
priors (uniform distributions for each parameter), Lo[M(ui)] is
constant.

Eq. (5) (Beven and Freer, 2001) illustrates how the prediction
quantiles (PðẐt < zÞ; uncertainty bounds) are then calculated
from the retained posterior likelihoods.

PðẐt < zÞ ¼
Xn

i¼1

L½MðuiÞjẐt;i < z( (5)

Where Ẑt;i is the value of variable Z at time t simulated by
model M(ui) with parameter set ui. The computation of 90%
uncertainty bounds for each hourly time step proceeds in this
way: (1) predictions of LE, H and NEE from the retained runs are
ranked from low to high flux, Ẑt;i, (2) likelihood values asso-
ciated with each parameter set are maintained along with the
fluxes as they are ranked, L½MðuiÞjẐt;i < z(, (3) the likelihood
values are then summed until 0.05 and 0.95 are reached

Pn
i¼1 L½MðuiÞjẐt;i < z( and (4) the flux at these points (z; 0.05

and 0.95) are the 5th and 95th prediction quantiles/uncertainty
bounds for that time step. Uncertainty bounds such as these
are probabilistic and represent the predictive uncertainty of
the SiB2.5 model as conditioned on the input data, the obser-
vations, the parameter sets and the chosen likelihood mea-
sure (Beven and Freer, 2001).

3. Results

3.1. Minimum RMSD errors

There is a minimum level of error between observations and
simulations that could not be surpassed despite the many
parameter combinations and thousands of simulations
(Table 3). The magnitude of this error, however, varies
throughout the year. For NEE and LE the largest errors occur
during the growing season: June, July, August and September.

For H, the largest errors occur during the shoulder seasons:
April, May and October as well as in January. In general, the
largest errors occur in times of highest flux.

Table 3 – Minimum root mean square difference between
observations and simulations across all 20,000 simula-
tions

Month NEE
(mmol m!2 s!1)

LE
(W m!2)

H
(W m!2)

All 2.68 42.04 36.60
January 0.66 8.05 41.25
February 0.85 15.00 30.92
March 0.65 19.81 31.08
April 1.27 23.20 39.36
May 1.73 37.85 42.69
June 4.56 62.42 35.30
July 4.44 70.38 28.82
August 4.59 64.21 26.76
September 3.09 52.50 26.32
October 1.93 32.58 34.16
November 1.19 14.23 24.76
December 0.46 11.00 17.82

Fig. 3 – Number of parameter sets common to both LE,
H and NEE, LE, H multi-objective criteria. Common
parameter sets were evaluated in the 2000 best-
performing (smallest likelihood value) parameter sets for
each multi-objective criterion. A larger proportion of
common runs indicates a stronger degree of coupling
between energy balance and net ecosystem exchange.
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3.2. Parameter rankings

Parameter rankings are given in Tables 4 and 5. Many of the
parameters the model is most sensitive to are shared by both

criteria and are therefore the most important to define well.
Considering only the 10 most influential parameters in each
month, three parameters stand out as present in this group in
each month and for both criteria, these are: ROOTD, Z1 and
HHTI. Other parameters in this most influential group that the
two criteria share at least half the time (e.g. )6 months) are:
ZC, TRDM, SOREF2 and Z2. HHTI and TRDM, which are both
photosynthesis parameters, are highly influential for both
criteria, indicating correct simulation of CO2 fluxes is

important in constraining the energy as well as the carbon
fluxes.

The total number of influential parameters varies
through time for the two multi-objective criteria, from a

low of 28% of the parameters (LE, H criterion in January)
to a high of 63% of the parameters (NEE, LE, H criterion in
May). At any given time, model results are relatively
insensitive to nearly half the input parameters. A greater
proportion of common parameter sets indicate that the
processes controlling NEE, LE and H are more coupled
during those time periods. The highest number of para-
meter sets common to both criteria occurs in mid-growing
season and in the winter, the lowest number of common

Table 4 – Model parameters from the top performance class ranked for each month by the Kolmogorov–Smirnov
coefficient for the LE, H multi-objective criteria

Parameters are ranked in descending order of influence. Shaded parameters are significant at the p = 0.01 level.
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parameter sets occurs in the shoulder seasons of spring and
fall (Fig. 3).

3.3. Posterior distributions

The posterior distributions of parameters from the retained
parameter sets contain information on the appropriateness of
the parameter range used in the analysis and information on
optimum parameter values (Braswell et al., 2005). Analyses of
posterior distributions are given below for parameters used to
calculate aerodynamic resistance, fPAR, energy balance and
photosynthesis. Though an analysis of all the parameters is
not given here, some general insights can be drawn from these
examples for LSMs.

The model is sensitive to the specification of canopy base
height (Z1) and canopy inflection height (ZC) for all months,

and canopy top height (Z2) in nearly all months for both
criteria. These parameters are used in SiB to determine
aerodynamic resistance and canopy snow in winter. An
examination of the frequency histograms for the parameters
Z1 and Z2 using the LE, H criterion shows that in the winter

months, parameter sets which produce the best runs have
both shorter canopies and smaller crown depths (Z2 ! Z1)
(Fig. 4a and b). Clearly, it is not reasonable to expect canopy
dimensions to change during the year and short canopy
heights are not appropriate.

The parameters ND98 (98th percentile NDVI), ND02 (2nd
percentile NDVI), LTMAX (maximum leaf area) and STEM
(stem area index) are used in the calculation of available
energy and net assimilation of carbon via fPAR and leaf area
index. Lower values of ND98 increase estimates of leaf area
and fPAR. Higher values of ND98 decrease estimates of leaf area

Table 5 – Model parameters from the top performance class ranked for each month by the Kolmogorov–Smirnov
coefficient for the LE, H, NEE multi-objective criteria

Parameters are ranked in descending order of influence. Shaded parameters are significant at the p = 0.01 level.
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and fPAR. SiB2.5 shows the greatest sensitivity to ND98 in the
shoulder seasons (Fig. 5). For the LE, H criterion and the
parameter ND98, the best-performing values in April are in the

lower part of its range while the best-performing values in
October are in the upper part of its range (Fig. 5a). For the NEE,
LE, H criterion, the situation is similar to the LE, H criterion,
though less extreme, in April and October (Fig. 5b). In May
however, unlike in the LE, H criterion, the best-performing
values for the parameter ND98 are also in the upper part of its
range.

Soil reflectance in SiB2.5 is used in the calculation of
surface albedo and consequently available energy. In standard
SiB2.5, soil reflectance is assigned by biome, meaning that all
soils for a particular biome have the same reflectance

properties that do not change with soil texture, season or
the moisture content of the soil. Sensitivity to these
parameters is exhibited year round with the LE, H criterion
(Fig. 6) and in particular in May, November and December for
both criteria.

The parameter HHTI, the photosynthesis high temperature
inhibition 1/2-point, consistently displayed a normal distribu-
tion with a peak between 300 and 310 K (e.g. Fig. 7a). The
stability of the distribution through time suggests that there is
a relatively fixed optimal value for this parameter. The
posterior distribution for the photosynthesis low temperature

inhibition 1/2-point (HLTI) favored values that were in the
upper half of its range, particularly in summer (Fig. 7b). TRDM,
the autotrophic respiration inhibition 1/2-point temperature,

was sensitive across all months with a normal distribution
centered consistently on 321 K, about seven degrees lower
than the default value.

Fig. 4 – Frequency histograms of: (a) Canopy top height (Z2) and (b) Canopy bottom height (Z1) for the LE, H criterion in January
(black) and July (grey) 1997. January is representative of the winter months, July is representative of the summer months.

Fig. 5 – Cumulative frequency diagrams for the parameter ND98 for the months April (thick grey), May (thick black) and
October (dashed grey) and the uniform distribution (thin black). (a) LE, H criterion and (b) NEE, LE, H criterion.

Fig. 6 – Plot of the Kolmogorov–Smirnov test statistic for
visible (black) and near infrared (grey) soil reflectance for
both multi-objective criteria. Thin solid lines represent the
NEE, LE, H criterion, dashed lines indicate the LE, H
criterion. Sensitivity is indicated if points fall above the
thick black line ( p = 0.01).
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Three parameters that control the rates and efficiency of
photosynthesis show similar patterns: the rubisco velocity of a
leaf in full sun (VMAX), the slope of the Ball–Berry photo-
synthesis–conductance relationship (GRADM) and the mini-
mum stomatal conductance (BINTER). They are all highly
sensitive during the growing season but also show a peak in

sensitivity in April. During the growing season, the parameters
VMAX and GRADM undergo shifts in their ranges that appear
to be ecologically meaningful. At the beginning and the end of
the growing season, the best-performing parameter sets have
lower values (indicating reduced photosynthetic capacity and
reduced conductance) than during the height of the growing
season (Fig. 8). This is consistent with results from a recent
model-data comparison with SiB2 in an agricultural–prairie
system indicating that photosynthetic capacity was over-
estimated by SiB2 at the beginning and end of the growing
season and that both young and senescing leaves might have

less photosynthetic capacity than high-season leaves (Hanan
et al., 2005).

3.4. Uncertainty estimation

The expectation, given a realistic model of the system, is that
the predictive uncertainty bounds will be wide enough to
encompass the observations and that the observations will fall
in the center of the bounds (Beven and Freer, 2001). The
parameters were constrained at monthly and annual time
scales and so systematic errors at hourly and daily time scales

can indicate an inability of the model to capture some
relatively high frequency process or environmental condition,
or noise in the observations.

Fig. 9 shows example diurnal cycles of NEE, LE and H and
the uncertainty arising from parameter choice for 2 days in
1997, July 29 and October 23. The predictive uncertainty

bounds shown were constrained monthly with the NEE, LE, H
criterion. The observations of NEE are well centered within the
uncertainty bounds in both time periods (Fig. 9a and d).
Sensible heat flux observations (Fig. 9c and f), are also quite
well centered within the uncertainty bounds in July, but in
October the observations fall well above the uncertainty
bounds during the daytime. For LE there is more variability
during both time periods (Fig. 9b and e). In both July and
October, the model is unable to simulate the relatively higher
afternoon latent heat flux. The magnitude of the uncertainty
bounds also varies with time of day (or magnitude of flux).

There are patterns in both the observations and the hourly
predictive uncertainty bounds that occur within a month
(Fig. 10). At the WLEF site, leaf-off occurred in the days around
October 10th (Davis et al., 2003). After this time, both the
observations and uncertainty bounds for NEE change in
magnitude, reflecting the loss of photosynthesizing vegetation
(Fig. 10b). During the time period just before and after leaf-off,
observations of nighttime net ecosystem exchange fall well
below the predictive uncertainty bounds, indicating systema-
tic under prediction of nighttime NEE during this time period.
In other months, such as July, the relationship between

Fig. 7 – Frequency histograms for (a) photosynthesis high temperature inhibition 1/2-point (HHTI) and (b) photosynthesis
low temperature inhibition 1/2-point (HLTI) for the month of July using the NEE, LE, H criterion.

Fig. 8 – Frequency histograms for the parameters (a) rubisco velocity of a leaf in full sun (VMAX) and (b) the slope of the Ball–
Berry photosynthesis–conductance relationship (GRADM) for the growing season using the NEE, LE, H criterion. The black
and white bars show lower optimal values at the beginning (June; white) and end (October; black) of the growing season,
respectively, the gray bars show higher optimal values during the height of the growing season (July, August, September).
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Fig. 9 – Diurnal cycles of observations (symbol) and predictive uncertainty bounds (5th percentile in grey, 95th percentile in
black) for July 29 (a–c) and October 23 (d–f), 1997 for NEE (a and d), LE (b and e) and H (c and f). Predictive uncertainty bounds
were constrained with the NEE, LE, H criterion and parameter sets were conditioned monthly.

Fig. 10 – Hourly predictive uncertainty bounds for NEE constrained monthly on the NEE, LE, H criterion (a) July, 1997 and (b)
October, 1997. Observations are symbols, 5th percentile uncertainty bound is in grey, 95th percentile uncertainty bound is
in black.

Table 6 – Percentage of observations above, within and below the 5th and 95th percentile predictive uncertainty bounds
for latent heat flux

LE, H NEE, LE, H

%Above %Within %Below %Above %Within %Below

January 43 19 38 42 19 39
February 53 11 36 52 12 36
March 44 13 43 45 13 42
April 21 19 60 20 19 61
May 40 33 27 43 30 27
June 29 35 36 28 36 36
July 28 36 36 28 36 36
August 32 33 35 33 32 35
September 26 29 45 26 28 46
October 32 29 39 30 31 39
November 44 20 36 44 21 35
December 54 15 31 55 16 29

LE, H and NEE, LE, H constraints, conditioned monthly.
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observations and the predictive uncertainty bounds is more
stable (Fig. 10a).

3.5. Predictive uncertainty with additional constraints

Monthly mean diurnal cycles provide a useful summary of the
results. Fig. 11 presents the monthly mean diurnal uncertainty
in simulations of NEE, LE and H constrained monthly on LE, H
and NEE, LE, H. The two constraints, LE, H and NEE, LE, H,
resulted in very similar predictive uncertainty bounds for both

LE and H (Fig. 11b and c; Tables 6 and 7). The optimized model
frequently exhibits a systematic bias in H and LE which cannot
be corrected by adjusting parameters (Fig. 11b and c). For both
LE and H, less than 50% of the observations fall within the
uncertainty bounds, with better performance in summer. In
many months, where one heat flux shows systematic over-
prediction, the other shows systematic under-prediction.
Simulated NEE shows much less systematic bias relative to
its uncertainty than LE and H (Fig. 11a, Table 8).

There are more obvious differences between the predic-
tive uncertainty bounds for the two constraints (LE, H and

NEE, LE, H) with respect to observations of NEE than there
were for observations of LE and H. April, May and October
show the most difference, with the predictive uncertainty
bounds being narrower in April and May for the NEE, LE, H
constraint and the uncertainty bound for October being
narrower in the nighttime for the LE, H constraint. The
summer months, which were time periods shown to have a
large number of common simulations between the two
constraints, show the least difference between the two
constraints.

3.6. Annual versus monthly constraints

The observational constraint on model parameterization, and
resulting estimation uncertainty, was evaluated at two
different time scales: monthly and for the annual cycle
(Fig. 12). For NEE, daytime fluxes were better captured by the
monthly constraint while nighttime fluxes were better
captured by the annual constraint, reflecting the time scales
on which these two processes operate. Ecosystem respiration
in SiB2.5 is scaled to match the annual assimilation of carbon

Fig. 11 – Monthly mean diurnal predictive uncertainty constrained monthly on LE, H (dashes) and NEE, LE, H (solid line) for (a)
NEE, (b) LE and (c) H. Observations are symbols, 5th percentile uncertainty bound are in blue, 95th percentile uncertainty
bound are in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of the article.)
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by the vegetation. Conditioning on monthly measurements
was more effective for LE and H. Predictive uncertainty for
daytime NEE was reduced in April, May and June for the
annual constraint, whereas predictive uncertainty for night-

time NEE was reduced in the summer months. For LE, the
monthly constrained predictive uncertainty was less than the
annually constrained predictive uncertainty in all months
except July and August.

Table 7 – Percentage of observations above, within and below the 5th and 95th percentile predictive uncertainty bounds
for sensible heat flux

LE, H NEE, LE, H

%Above %Within %Below %Above %Within %Below

January 48 15 37 48 16 36
February 48 18 34 48 18 34
March 48 18 34 49 18 33
April 29 31 40 29 31 40
May 29 28 43 30 28 42
June 23 39 38 23 39 38
July 20 44 36 21 44 35
August 25 33 42 25 34 41
September 19 39 42 20 40 40
October 38 22 40 38 27 35
November 43 20 37 44 20 36
December 50 18 32 51 21 28

LE, H and NEE, LE, H constraints conditioned monthly.

Fig. 12 – Monthly mean diurnal predictive uncertainty constrained annually (solid line) and monthly (dashed line) on NEE,
LE, H for (a) NEE, (b) LE and (c) H. Observations are symbols, 5th percentile uncertainty bound are in blue, 95th percentile
uncertainty bound are in red. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of the article.)
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4. Discussion and conclusions

In conducting this analysis, in which tens of thousands of
simulations were run with randomly varying but realistic
parameter sets, it was found that there was an irreducible
level of mismatch between the simulated and observed
fluxes. It was not possible to predict fluxes of latent and

sensible heat and net ecosystem exchange more precisely
than these limits, which varied by month and by flux
(Table 3). This minimum possible error reflects a level of
variability (or noise) in the observations, structural problems
with the model and/or mismatch between the model and
observations that cannot be overcome by varying para-
meters. The variability in the observations may be related to
measurement errors; surveys of FLUXNET data suggest there
is a mean energy imbalance in the measurements of
approximately 20% (Wilson et al., 2002) and other research
suggests that errors in NEE are around 7–12% (Baldocchi,
2003; Law et al., 2002). It is also possible that the variability in

the measurements stems from the heterogeneous nature of
the surface and the changing footprint of the measurements,
though the data processing techniques were designed to
minimize this. The minimum possible error is a measure of
uncertainty that reflects the expected degree of hourly
model-data mismatch, which in this analysis was for periods
of 1 month or 1 year. In the context of regional atmospheric
inversions, the minimum error can be used to estimate prior
model uncertainty where modeled fluxes are used, or provide
an estimate of uncertainty for assimilation of measured
fluxes.

Patterns in the sensitivity of the parameterization were
related to many things: the ecology of the system, the
specification of input data and how they were used, and
weakness in the model structure itself. As a result, it is difficult
to determine in many cases whether better specification of a
parameter or better representation of a process is more
essential to improving model results. However, some para-
meters, such as leaf temperature sensitivities HHTI and TRDM,
were remarkably consistent and simple adjustment of the
parameter values themselves is all that seems necessary for
improvement.

Unlike many sensitivity analyses, which have focused on
time invariant parameterizations, we investigated how sensi-
tivities change through time. In simulating land surface
atmosphere exchanges in SiB2.5 a combination of time
varying and time invariant parameters are utilized. The
time-varying parameters represent seasonally changing vege-
tation properties evaluated using the normalized difference

vegetation index. The results presented here suggest that a
much larger set of parameters may need to be treated as
seasonally varying.

Parameters related to photosynthesis were more influen-
tial in the growing season and parameters related to energy
balance more influential at other times of the year. The
greatest sensitivity to parameters, both in the magnitude of
the sensitivity as well as in the number of parameters,
occurred in the shoulder seasons, those periods of rapid land
surface change surrounding leaf-growth in the spring and
leaf-fall in the autumn. During these periods a combination of
parameters reflecting energy balance, the temperature

response of photosynthesis and the aerodynamic resistance
of the land surface were most influential.

The variability of the top parameter sets within seasons
provided additional useful information and suggests that any
optimization on tower flux data should account for and allow
for variability at sub-annual time scales in order to capture the
most information. The variability of the photosynthesis
parameters VMAX, GRADM and HLTI within the growing
season suggests that changing the photosynthetic capacity of
leaves during the growing season might be required. Similarly,
the high variability and sensitivity of the model to the soil

reflectance parameters could represent true temporal varia-
bility in soil properties that is not represented using fixed
values.

Given the number of parameters investigated, it was not
surprising to find that SiB2.5 exhibited signs of equifinality. At
any given time, half of the parameters were found to be non-
influential. It is encouraging that reasonable estimates of
these parameters are likely sufficient to obtain a good fit to
observations, but their values cannot therefore be estimated
from the data used here. The influential and non-influential
parameters varied by month and would likely also vary

Table 8 – Percentage of observations above, within and below the 5th and 95th percentile predictive uncertainty bounds
for net ecosystem exchange

LE, H NEE, LE, H

%Above %Within %Below %Above %Within %Below

January 8 56 36 22 39 39
February 6 57 37 18 46 36
March 4 76 20 21 51 28
April 7 74 19 13 58 29
May 6 74 20 10 48 42
June 20 63 17 21 59 20
July 18 71 11 19 68 13
August 18 61 21 20 57 23
September 15 66 19 18 60 22
October 5 40 55 9 51 40
November 3 74 23 17 56 27
December 3 87 10 29 39 32

LE, H and NEE, LE, H constraints conditioned monthly.
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between vegetation types and depending on different envir-
onmental conditions. Further, ‘‘non-influential’’ does not
mean that parameters are unimportant. If the non-influential
parameters contribute to the mechanistic underpinnings of

the model, even if only in a minor way, they are still important,
particularly for model applications to new ecosystems or
novel environmental conditions.

The results of the sensitivity analysis also emphasized the
risk involved in undirected model optimization. Parameter
interactions in complex models such as SiB2.5 are very non-
linear and compensation among parameters led to many
parameter sets that did an equally good job of predicting
fluxes. This is a serious consideration for optimization studies,
suggesting that uncertainty resulting from the parameteriza-
tion of the model should be incorporated in any model-data

fusion exercise. Besides compensating for one another, the
parameters also compensate for imperfect driver data and
model structural problems. In some instances, the parameter
distributions resulting from the sensitivity analysis were not
biologically realistic with respect to observed conditions (e.g.
Z1 and Z2), though they produced the best fluxes. Thus, too
highly automated optimization procedures should be viewed
with caution, especially since it can be difficult to determine
whether better parameter values or better model structure is
needed. Sensitivity analyses such as conducted here can help
identify important parameters for optimization, avoid obtain-

ing a good fit to data for the wrong reasons and thus maintain
predictive power in model simulations.

The addition of NEE changes the ranking and number of
influential parameters (Tables 4 and 5), and better constrains
model parameterizations within physically or biologically
reasonable ranges (e.g. Fig. 5). As such, when using the LE, H
criterion alone, the highest ranking (optimal) parameter sets
may provide good simulations of energy fluxes for the wrong
reasons, resulting in parameterizations that have poor
predictive power.

Even using optimized parameters, biases in the simulated
fluxes as compared to the observed fluxes were observed.

Because the parameters were given a large amount of freedom
to vary, systematic errors indicate either an error in the
structure or logic of the model that precludes the representa-
tion of a process or systematic errors in the observations
themselves. The high percentage of observations that fell
within the predictive uncertainty bounds for net ecosystem
exchange indicates that the structure and logic of the model
for this flux is quite good, at least at diurnal time scales. Over
and under estimation of daytime net ecosystem exchange in
times of rapid landscape change (spring and fall) was
associated with the lack of high temporal precision in the

time-varying parameterization of the model, especially leaf
area index and fPAR. Instead of linearly ramping these
quantities from the center points of each month, shorter
compositing periods of NDVI could be used that would more
directly relate to the rapidly changing surface properties at
such sensitive times of the year. Biases in the nighttime net
ecosystem exchange, which were observed in some months,
could be related to the simplified respiration model that
responds to temperature, moisture and the annual integral of
GPP, but does not respond to recent photosynthetic activity or
recent input of litter.

Far fewer of the observations of sensible and latent heat
flux fell within the predictive uncertainty bounds and biases
were more obvious and persistent than for net ecosystem
exchange. There are several possible reasons why heat fluxes

are more problematic then net ecosystem exchange for SiB2.5.
As mentioned previously, energy balance is enforced in most
single point land surface-atmosphere models, however
observations of the components of net radiation made in
the field rarely close the surface energy budget (Wilson et al.,
2002). Further, despite careful rules to ensure that the flux
measurements are representative of the heterogeneous land-
scape at WLEF, turbulence and landscape variability that is not
characterized in SiB2.5 could be playing a significant role in the
variability of the fluxes. For example, Ewers et al. (2002) found
large differences in the transpiration of four different forest

types (northern hardwoods, conifer, aspen/fir, forested wet-
lands) in the WLEF area; in the model, a single ecosystem
classification (‘‘mixed forest’’) represents the WLEF area.
Shifts in wind direction at certain times of day or days of
year could produce fluxes dominated by one forest type or
another that SiB2.5 is not intended to reproduce. It is possible
that predicting net ecosystem exchange is less problematic
because it is less variable across the different vegetation
assemblages at WLEF than are the energy fluxes and therefore
mean-field parameterizations and functional groups are
adequate representations.

While adding NEE increased model sensitivity and helped
constrain model parameterization within reasonable ranges
(and thus should reduce potential for model bias) it did not
reduce predictive uncertainty bounds for LE and H. Given the
coupling of transpiration and carbon assimilation in SiB2.5,
this is somewhat surprising. It is possible that the greater
variability of the heat fluxes mentioned above prevented the
additional constraint from having much of an effect. As
expected, the additional NEE constraint did generally reduce
the predictive uncertainty of net ecosystem exchange. The
least amount of reduction in predictive uncertainty occurred
in the summer months. The largest reduction occurred during

the spring and fall months, when rapid changes in the
landscape (thaw/freeze/leaf-on/leaf-off) and shifts from
coupled energy, water and carbon fluxes to a less coupled
state increased the power of an additional constraint.

Conventional wisdom suggests that the more data a model
is conditioned and constrained with, and the longer the period
of time, the better and more robust the results will be.
Depending on the temporal scale of variability of the quantity
being predicted and the ability of the model to match that
scale, this may or may not be true. The results presented here
on constraining predictions annually versus monthly show

that some quantities, such as nighttime net ecosystem
exchange, were on average better constrained annually,
whereas other quantities that show more variability, such
as daytime NEE, latent and sensible heat flux, were better
constrained monthly. The results are partially dependent on
the scale of variability represented in SiB2.5. For example,
ecosystem respiration is an annually bounded flux in SiB2.5
that varies only with soil temperature and moisture. The
assimilation of carbon and latent heat flux are more
dependent on shorter-term environmental forcing and tem-
porally varying physiology and thus the monthly constraint
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was more appropriate. Constraining on shorter time periods
may compensate for a lack of flexibility and variability in the
model through adjustments in the parameterization. Under-
standing these compensations is important for the formula-

tion of robust predictive models, because while some will be
ecologically meaningful, others will not. Further, these results
also suggest that rather than overwhelm the problem of
optimization with observations, there are ways to maximize
the value of the data, such as breaking it down into shorter
time periods for some processes and not for others.

The evaluation of predictive uncertainty in land surface
models can be used to investigate the sources of observed bias
and correct the model and/or observations for deficiencies in
structure or logic. Another use would be to incorporate the
uncertainty into the modeling itself. In the analysis presented

here there was clearly variability in the real world that was not
captured by the model and may in fact not be easily calculated
or parameterized. The addition of variability into the model
predictions based on the level of observed uncertainty might
be possible, particularly when ensemble runs such as these
are impractical. Additionally, larger-scale atmospheric models
often must parameterize the uncertainty due to the variability
in land surface fluxes. An analysis such as this provides
estimates of predictive uncertainty as it varies through time
and may be used to quantify the expected model-data
mismatch for inversion studies.

The results of model analyses such as this one are partially
dependent on the site that is being modeled and the weather
conditions during the simulation, because the strengths and
weaknesses of any model vary with both of these conditions.
Drought or flood conditions that produce anomalous environ-
mental conditions might not provide good predictors of how
well a model does at characterizing a site in more average
years or how sensitive a model is generally to its parameter-
ization. On the other hand, an anomalous year might help to
fine tune parameterizations and/or reveal other deficiencies in
model structure and logic not previously identified (Franks
et al., 1997).

Given the complexity and large number of parameters of a
LSM like SiB2.5, use of 20,000 parameter sets may not be
sufficient to fully explore model behavior in all possible
parameter configurations. Thus, the parameter sensitivity and
uncertainty estimates reported in this paper are based on a
relatively small, but important, range of variation in combina-
tions of parameters. The number of simulations directly
impacts the robustness of both parameter sensitivities and
uncertainty estimates: more simulations would increase the
power of the results. Because the full parameter space could
not be explored, the sensitivities and uncertainties reported in

this paper should be considered only as they relate to the
analysis presented here. To refine these estimates, a further
analysis with both a reduced parameter space and improved
parameters and model formulation based on the results
presented here could be done. The GLUE methodology is
designed such that additional and/or improved data can be
easily incorporated and the value assessed.

The research presented in this paper addresses some of the
key issues that carbon cycle science is currently facing and that
will become more important within the framework of con-
tinental scaling efforts using model-data fusion such as the

North American Carbon Program. In particular it addresses the
use of carbon cycle data assimilation for the analysis of model
sensitivity to parameterization and model behavior. Reducing
uncertainty in surface flux estimates from LSMs is critical to

regional and large-scale efforts to characterize the carbon cycle.
This requires both a reduction in uncertainty in the parameter-
ization of models and a strengthening of the mechanistic
understanding on which the models are built. Model-data
fusion is non-trivial, requiring the synergistic development of
multiple models along with improved observations and
significant amounts of computing power. Sensitivity and
uncertainty analyses such as the ones presented here help to
define the areas where the most benefit can be gained.
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